IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v160y2015icp502-510.html
   My bibliography  Save this article

Effect of choked outlet on transient energy growth analysis of a thermoacoustic system

Author

Listed:
  • Zhao, Dan
  • Li, Lei

Abstract

Thermoacoustic instability occurs in many practical combustion systems. These systems are non-normal and associated with transient growth of acoustic disturbances. If the transient growth is large enough, then thermoacoustic instability may be triggered. In this work, transient energy growth analysis of a thermoacoustic system with a choked outlet is conducted. The effect of the choked boundary is studied by using an analytical and a linearized Euler equation (LEE) method. To quantify the transient growth, two energy measures are defined and calculated. One is associated with the acoustical energy. The other is the total energy of both entropy and acoustic fluctuations. Comparison is made between the transient growth results obtained from the analytical method and those from the LEE method. It is found that the transient growth analysis of the total energy by using the analytical model with the expression of the choked outlet is consistent with that by using the LEE method. However, when only acoustical energy is considered, the analytical model may leads to a wrong prediction of transient growth. The present work opens up new applicable way to predict transient stability behaviors of a practical engine system ended with a choked outlet.

Suggested Citation

  • Zhao, Dan & Li, Lei, 2015. "Effect of choked outlet on transient energy growth analysis of a thermoacoustic system," Applied Energy, Elsevier, vol. 160(C), pages 502-510.
  • Handle: RePEc:eee:appene:v:160:y:2015:i:c:p:502-510
    DOI: 10.1016/j.apenergy.2015.09.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915011873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.09.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Zhibin & Jaworski, Artur J. & Backhaus, Scott, 2012. "Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy," Applied Energy, Elsevier, vol. 99(C), pages 135-145.
    2. Ye, Jingjing & Medwell, Paul R. & Varea, Emilien & Kruse, Stephan & Dally, Bassam B. & Pitsch, Heinz G., 2015. "An experimental study on MILD combustion of prevaporised liquid fuels," Applied Energy, Elsevier, vol. 151(C), pages 93-101.
    3. Taamallah, S. & Vogiatzaki, K. & Alzahrani, F.M. & Mokheimer, E.M.A. & Habib, M.A. & Ghoniem, A.F., 2015. "Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations," Applied Energy, Elsevier, vol. 154(C), pages 1020-1047.
    4. Zhao, Dan & Li, Shihuai & Yang, Wenming & Zhang, Zhiguo, 2015. "Numerical investigation of the effect of distributed heat sources on heat-to-sound conversion in a T-shaped thermoacoustic system," Applied Energy, Elsevier, vol. 144(C), pages 204-213.
    5. Fichera, A. & Pagano, A., 2009. "Monitoring combustion unstable dynamics by means of control charts," Applied Energy, Elsevier, vol. 86(9), pages 1574-1581, September.
    6. Yu, Guoyao & Wang, Xiaotao & Dai, Wei & Luo, Ercang, 2013. "Study on energy conversion characteristics of a high frequency standing-wave thermoacoustic heat engine," Applied Energy, Elsevier, vol. 111(C), pages 1147-1151.
    7. Fichera, A. & Losenno, C. & Pagano, A., 2001. "Experimental analysis of thermo-acoustic combustion instability," Applied Energy, Elsevier, vol. 70(2), pages 179-191, October.
    8. Zhang, Zhiguo & Zhao, Dan & Li, S.H. & Ji, C.Z. & Li, X.Y. & Li, J.W., 2015. "Transient energy growth of acoustic disturbances in triggering self-sustained thermoacoustic oscillations," Energy, Elsevier, vol. 82(C), pages 370-381.
    9. Singh, A.V. & Yu, M. & Gupta, A.K. & Bryden, K.M., 2013. "Thermo-acoustic behavior of a swirl stabilized diffusion flame with heterogeneous sensors," Applied Energy, Elsevier, vol. 106(C), pages 1-16.
    10. Wu, Zhanghua & Chen, Yanyan & Dai, Wei & Luo, Ercang & Li, Donghui, 2015. "Investigation on the thermoacoustic conversion characteristic of regenerator," Applied Energy, Elsevier, vol. 152(C), pages 156-161.
    11. Zhang, Zhiguo & Zhao, Dan & Dobriyal, R. & Zheng, Youqu & Yang, Wenming, 2015. "Theoretical and experimental investigation of thermoacoustics transfer function," Applied Energy, Elsevier, vol. 154(C), pages 131-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Dan & Li, Shen & Zhao, He, 2016. "Entropy-involved energy measure study of intrinsic thermoacoustic oscillations," Applied Energy, Elsevier, vol. 177(C), pages 570-578.
    2. Deng, Yuanwang & Ying, Hejie & E, Jiaqiang & Zhu, Hao & Wei, Kexiang & Chen, Jingwei & Zhang, Feng & Liao, Gaoliang, 2019. "Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries," Energy, Elsevier, vol. 176(C), pages 91-102.
    3. Wu, Gang & Xu, Xiao & Li, S. & Ji, C., 2019. "Experimental studies of mitigating premixed flame-excited thermoacoustic oscillations in T-shaped Combustor using an electrical heater," Energy, Elsevier, vol. 174(C), pages 1276-1282.
    4. Laera, D. & Campa, G. & Camporeale, S.M., 2017. "A finite element method for a weakly nonlinear dynamic analysis and bifurcation tracking of thermo-acoustic instability in longitudinal and annular combustors," Applied Energy, Elsevier, vol. 187(C), pages 216-227.
    5. Wu, Gang & Jin, Xiao & Li, Qiangtian & Zhao, He & Ahmed, I.R. & Fu, Jianqin, 2016. "Experimental and numerical definition of the extreme heater locations in a closed-open standing wave thermoacoustic system," Applied Energy, Elsevier, vol. 182(C), pages 320-330.
    6. Li, Xinyan & Zhao, Dan & Yang, Xinglin & Wen, Huabing & Jin, Xiao & Li, Shen & Zhao, He & Xie, Changqing & Liu, Haili, 2016. "Transient growth of acoustical energy associated with mitigating thermoacoustic oscillations," Applied Energy, Elsevier, vol. 169(C), pages 481-490.
    7. Peng, Qingguo & E, Jiaqiang & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Meng, Tian & Qiu, Runzhi, 2018. "Effects analysis on combustion and thermal performance enhancement of a nozzle-inlet micro tube fueled by the premixed hydrogen/air," Energy, Elsevier, vol. 160(C), pages 349-360.
    8. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Ji, C.Z., 2018. "Numerical and experimental demonstration of actively passive mitigating self-sustained thermoacoustic oscillations," Applied Energy, Elsevier, vol. 222(C), pages 257-266.
    9. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).
    10. Zhang, Bin & E, Jiaqiang & Gong, Jinke & Yuan, Wenhua & Zuo, Wei & Li, Yu & Fu, Jun, 2016. "Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process," Applied Energy, Elsevier, vol. 181(C), pages 14-28.
    11. Deng, Yuanwang & Feng, Changling & E, Jiaqiang & Wei, Kexiang & Zhang, Bin & Zhang, Zhiqing & Han, Dandan & Zhao, Xiaohuan & Xu, Wenwen, 2019. "Performance enhancement of the gasoline engine hydrocarbon catchers for reducing hydrocarbon emission during the cold-start period," Energy, Elsevier, vol. 183(C), pages 869-879.
    12. E, Jiaqiang & Zhao, Xiaohuan & Liu, Guanlin & Zhang, Bin & Zuo, Qingsong & Wei, Kexiang & Li, Hongmei & Han, Dandan & Gong, Jinke, 2019. "Effects analysis on optimal microwave energy consumption in the heating process of composite regeneration for the diesel particulate filter," Applied Energy, Elsevier, vol. 254(C).
    13. Han, Nuomin & Zhao, Dan & Schluter, Jorg U. & Goh, Ernest Seach & Zhao, He & Jin, Xiao, 2016. "Performance evaluation of 3D printed miniature electromagnetic energy harvesters driven by air flow," Applied Energy, Elsevier, vol. 178(C), pages 672-680.
    14. Li, Shen & Li, Qiangtian & Tang, Lin & Yang, Bin & Fu, Jianqin & Clarke, C.A. & Jin, Xiao & Ji, C.Z. & Zhao, He, 2016. "Theoretical and experimental demonstration of minimizing self-excited thermoacoustic oscillations by applying anti-sound technique," Applied Energy, Elsevier, vol. 181(C), pages 399-407.
    15. E, Jiaqiang & Liu, Guanlin & Zhang, Zhiqing & Han, Dandan & Chen, Jingwei & Wei, Kexiang & Gong, Jinke & Yin, Zibin, 2019. "Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model," Applied Energy, Elsevier, vol. 243(C), pages 321-335.
    16. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    17. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Li, Shihuai & Ji, C.Z., 2019. "Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater," Applied Energy, Elsevier, vol. 239(C), pages 331-342.
    18. Zhang, Zhiqing & Lv, Junshuai & Xie, Guanglin & Wang, Su & Ye, Yanshuai & Huang, Gaohua & Tan, Donlgi, 2022. "Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel," Energy, Elsevier, vol. 254(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Gang & Jin, Xiao & Li, Qiangtian & Zhao, He & Ahmed, I.R. & Fu, Jianqin, 2016. "Experimental and numerical definition of the extreme heater locations in a closed-open standing wave thermoacoustic system," Applied Energy, Elsevier, vol. 182(C), pages 320-330.
    2. Li, Shen & Li, Qiangtian & Tang, Lin & Yang, Bin & Fu, Jianqin & Clarke, C.A. & Jin, Xiao & Ji, C.Z. & Zhao, He, 2016. "Theoretical and experimental demonstration of minimizing self-excited thermoacoustic oscillations by applying anti-sound technique," Applied Energy, Elsevier, vol. 181(C), pages 399-407.
    3. Zhao, Dan & Li, Shen & Zhao, He, 2016. "Entropy-involved energy measure study of intrinsic thermoacoustic oscillations," Applied Energy, Elsevier, vol. 177(C), pages 570-578.
    4. Li, Xinyan & Zhao, Dan & Yang, Xinglin & Wen, Huabing & Jin, Xiao & Li, Shen & Zhao, He & Xie, Changqing & Liu, Haili, 2016. "Transient growth of acoustical energy associated with mitigating thermoacoustic oscillations," Applied Energy, Elsevier, vol. 169(C), pages 481-490.
    5. Zhang, Zhiguo & Zhao, Dan & Dobriyal, R. & Zheng, Youqu & Yang, Wenming, 2015. "Theoretical and experimental investigation of thermoacoustics transfer function," Applied Energy, Elsevier, vol. 154(C), pages 131-142.
    6. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Ji, C.Z., 2018. "Numerical and experimental demonstration of actively passive mitigating self-sustained thermoacoustic oscillations," Applied Energy, Elsevier, vol. 222(C), pages 257-266.
    7. Zhao, He & Li, Guoneng & Zhao, Dan & Zhang, Zhiguo & Sun, Dakun & Yang, Wenming & Li, Shen & Lu, Zhengli & Zheng, Youqu, 2017. "Experimental study of equivalence ratio and fuel flow rate effects on nonlinear thermoacoustic instability in a swirl combustor," Applied Energy, Elsevier, vol. 208(C), pages 123-131.
    8. Zhao, Dan & Li, Shihuai & Yang, Wenming & Zhang, Zhiguo, 2015. "Numerical investigation of the effect of distributed heat sources on heat-to-sound conversion in a T-shaped thermoacoustic system," Applied Energy, Elsevier, vol. 144(C), pages 204-213.
    9. Li, Xinyan & Huang, Yong & Zhao, Dan & Yang, Wenming & Yang, Xinglin & Wen, Huabing, 2017. "Stability study of a nonlinear thermoacoustic combustor: Effects of time delay, acoustic loss and combustion-flow interaction index," Applied Energy, Elsevier, vol. 199(C), pages 217-224.
    10. Zhang, Zhiguo & Zhao, Dan & Li, S.H. & Ji, C.Z. & Li, X.Y. & Li, J.W., 2015. "Transient energy growth of acoustic disturbances in triggering self-sustained thermoacoustic oscillations," Energy, Elsevier, vol. 82(C), pages 370-381.
    11. Wu, Gang & Xu, Xiao & Li, S. & Ji, C., 2019. "Experimental studies of mitigating premixed flame-excited thermoacoustic oscillations in T-shaped Combustor using an electrical heater," Energy, Elsevier, vol. 174(C), pages 1276-1282.
    12. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Li, Shihuai & Ji, C.Z., 2019. "Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater," Applied Energy, Elsevier, vol. 239(C), pages 331-342.
    13. Laera, D. & Campa, G. & Camporeale, S.M., 2017. "A finite element method for a weakly nonlinear dynamic analysis and bifurcation tracking of thermo-acoustic instability in longitudinal and annular combustors," Applied Energy, Elsevier, vol. 187(C), pages 216-227.
    14. Han, Nuomin & Zhao, Dan & Schluter, Jorg U. & Goh, Ernest Seach & Zhao, He & Jin, Xiao, 2016. "Performance evaluation of 3D printed miniature electromagnetic energy harvesters driven by air flow," Applied Energy, Elsevier, vol. 178(C), pages 672-680.
    15. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    16. Guo, Lixian & Zhao, Dan & Cheng, Li & Dong, Xu & Xu, Jingyuan, 2024. "Enhancing energy conversion performances in standing-wave thermoacoustic engine with externally forcing periodic oscillations," Energy, Elsevier, vol. 292(C).
    17. Chen, Geng & Wang, Yufan & Tang, Lihua & Wang, Kai & Yu, Zhibin, 2020. "Large eddy simulation of thermally induced oscillatory flow in a thermoacoustic engine," Applied Energy, Elsevier, vol. 276(C).
    18. Jin, Tao & Yang, Rui & Wang, Yi & Liu, Yuanliang & Feng, Ye, 2016. "Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/resistance tube," Applied Energy, Elsevier, vol. 183(C), pages 290-298.
    19. Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).
    20. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:160:y:2015:i:c:p:502-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.