IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2890-d1103119.html
   My bibliography  Save this article

Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications

Author

Listed:
  • Matteo Genovese

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy)

  • Viviana Cigolotti

    (Laboratory for Energy Storage, Batteries and Hydrogen Production and Utilization Technologies, Department of Energy Technologies and Renewable Sources, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Research Centre of Portici, 80055 Naples, Italy)

  • Elio Jannelli

    (Department of Engineering, University of Naples “Parthenope”, Centro Direzionale Is. C4, 80143 Naples, Italy)

  • Petronilla Fragiacomo

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy)

Abstract

Among the alternative fuels enabling the energy transition, hydrogen-based transportation is a sustainable and efficient choice. It finds application both in light-duty and heavy-duty mobility. However, hydrogen gas has unique qualities that must be taken into account when employed in such vehicles: high-pressure levels up to 900 bar, storage in composite tanks with a temperature limit of 85 °C, and a negative Joule–Thomson coefficient throughout a wide range of operational parameters. Moreover, to perform a refueling procedure that is closer to the driver’s expectations, a fast process that requires pre-cooling the gas to −40 °C is necessary. The purpose of this work is to examine the major phenomena that occur during the hydrogen refueling process by analyzing the relevant theory and existing modeling methodologies.

Suggested Citation

  • Matteo Genovese & Viviana Cigolotti & Elio Jannelli & Petronilla Fragiacomo, 2023. "Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications," Energies, MDPI, vol. 16(6), pages 1-31, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2890-:d:1103119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2890/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    2. Remzi Can Samsun & Michael Rex & Laurent Antoni & Detlef Stolten, 2022. "Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives," Energies, MDPI, vol. 15(14), pages 1-34, July.
    3. Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
    4. Marco Pellegrini & Alessandro Guzzini & Cesare Saccani, 2020. "A Preliminary Assessment of the Potential of Low Percentage Green Hydrogen Blending in the Italian Natural Gas Network," Energies, MDPI, vol. 13(21), pages 1-22, October.
    5. Sdanghi, G. & Maranzana, G. & Celzard, A. & Fierro, V., 2019. "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 150-170.
    6. Wen, Chuang & Rogie, Brice & Kærn, Martin Ryhl & Rothuizen, Erasmus, 2020. "A first study of the potential of integrating an ejector in hydrogen fuelling stations for fuelling high pressure hydrogen vehicles," Applied Energy, Elsevier, vol. 260(C).
    7. Jones, J. & Genovese, A. & Tob-Ogu, A., 2020. "Hydrogen vehicles in urban logistics: A total cost of ownership analysis and some policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Shanshan Deng & Feng Li & Hao Luo & Tianqi Yang & Feng Ye & Richard Chahine & Jinsheng Xiao, 2023. "Lumped Parameter Modeling of SAE J2601 Hydrogen Fueling Tests," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    9. Matteo Muratori & Brian Bush & Chad Hunter & Marc W. Melaina, 2018. "Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles †," Energies, MDPI, vol. 11(5), pages 1-14, May.
    10. Apostolou, D. & Xydis, G., 2019. "A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Piraino, Francesco & Blekhman, David & Dray, Michael & Fragiacomo, Petronilla, 2021. "Empirically verified analysis of dual pre-cooling system for hydrogen refuelling station," Renewable Energy, Elsevier, vol. 163(C), pages 1612-1625.
    12. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Genovese & David Blekhman & Michael Dray & Francesco Piraino & Petronilla Fragiacomo, 2023. "Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method," Energies, MDPI, vol. 16(15), pages 1-14, August.
    2. Arkadiusz Małek & Agnieszka Dudziak & Jacek Caban & Monika Stoma, 2024. "Strategic Model for Yellow Hydrogen Production Using the Metalog Family of Probability Distributions," Energies, MDPI, vol. 17(10), pages 1-24, May.
    3. Fragiacomo, Petronilla & Martorelli, Michele & Genovese, Matteo & Piraino, Francesco & Corigliano, Orlando, 2024. "Thermodynamic modelling, testing and sensitive analysis of a directly pressurized hydrogen refuelling process with a compressor," Renewable Energy, Elsevier, vol. 226(C).
    4. Arianna Baldinelli & Marco Francesconi & Marco Antonelli, 2024. "Hydrogen, E-Fuels, Biofuels: What Is the Most Viable Alternative to Diesel for Heavy-Duty Internal Combustion Engine Vehicles?," Energies, MDPI, vol. 17(18), pages 1-16, September.
    5. Adam Saferna & Piotr Saferna & Szymon Kuczyński & Mariusz Łaciak & Adam Szurlej & Tomasz Włodek, 2024. "Effects of Hydrogen, Methane, and Their Blends on Rapid-Filling Process of High-Pressure Composite Tank," Energies, MDPI, vol. 17(5), pages 1-20, February.
    6. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Orlando Corigliano & Giuseppe De Lorenzo, 2023. "Experimental Activities on a Hydrogen-Powered Solid Oxide Fuel Cell System and Guidelines for Its Implementation in Aviation and Maritime Sectors," Energies, MDPI, vol. 16(15), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genovese, M. & Piraino, F. & Fragiacomo, P., 2024. "3E analysis of a virtual hydrogen valley supported by railway-based H2 delivery for multi-transportation service," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    3. Fragiacomo, Petronilla & Martorelli, Michele & Genovese, Matteo & Piraino, Francesco & Corigliano, Orlando, 2024. "Thermodynamic modelling, testing and sensitive analysis of a directly pressurized hydrogen refuelling process with a compressor," Renewable Energy, Elsevier, vol. 226(C).
    4. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    5. Lucian-Ioan Dulău, 2023. "CO 2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles," Clean Technol., MDPI, vol. 5(2), pages 1-17, June.
    6. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Guido Ala & Gabriella Di Filippo & Fabio Viola & Graziella Giglia & Antonino Imburgia & Pietro Romano & Vincenzo Castiglia & Filippo Pellitteri & Giuseppe Schettino & Rosario Miceli, 2020. "Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    8. Morales-Ospino, R. & Celzard, A. & Fierro, V., 2023. "Strategies to recover and minimize boil-off losses during liquid hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    9. Giuseppe De Lorenzo & Francesco Piraino & Francesco Longo & Giovanni Tinè & Valeria Boscaino & Nicola Panzavecchia & Massimo Caccia & Petronilla Fragiacomo, 2022. "Modelling and Performance Analysis of an Autonomous Marine Vehicle Powered by a Fuel Cell Hybrid Powertrain," Energies, MDPI, vol. 15(19), pages 1-21, September.
    10. Fanyue Qian & Weijun Gao & Dan Yu & Yongwen Yang & Yingjun Ruan, 2022. "An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan," Energies, MDPI, vol. 16(1), pages 1-23, December.
    11. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Long Li & Shuqi Wang & Shengxi Zhang & Ding Liu & Shengbin Ma, 2023. "The Hydrogen Energy Infrastructure Location Selection Model: A Hybrid Fuzzy Decision-Making Approach," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    14. Meriläinen, Altti & Montonen, Jan-Henri & Hopsu, Jeremias & Kosonen, Antti & Lindh, Tuomo & Ahola, Jero, 2023. "Power balance control and dimensioning of a hybrid off-grid energy system for a Nordic climate townhouse," Renewable Energy, Elsevier, vol. 209(C), pages 310-324.
    15. Kim, Min Soo & Kim, Jungchul & Kim, So Yeon & Chu, Chan Ho & Rho, Kyu Heon & Kim, Minsung & Kim, Dong Kyu, 2022. "Parametric study on the performance of electrochemical hydrogen compressors," Renewable Energy, Elsevier, vol. 199(C), pages 1176-1188.
    16. Calabrese, M. & Russo, D. & di Benedetto, A. & Marotta, R. & Andreozzi, R., 2023. "Formate/bicarbonate interconversion for safe hydrogen storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    17. Jianjun Ye & Zhenhua Zhao & Jinyang Zheng & Shehab Salem & Jiangcun Yu & Junxu Cui & Xiaoyi Jiao, 2020. "Transient Flow Characteristic of High-Pressure Hydrogen Gas in Check Valve during the Opening Process," Energies, MDPI, vol. 13(16), pages 1-16, August.
    18. Luigi Fortuna & Arturo Buscarino, 2022. "Sustainable Energy Systems," Energies, MDPI, vol. 15(23), pages 1-7, December.
    19. Roy, Dibyendu & Samanta, Samiran & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Multi-objective optimisation of a power generation system integrating solid oxide fuel cell and recuperated supercritical carbon dioxide cycle," Energy, Elsevier, vol. 281(C).
    20. Komova, O.V. & Simagina, V.I. & Butenko, V.R. & Odegova, G.V. & Bulavchenko, O.A. & Nikolaeva, O.A. & Ozerova, A.M. & Lipatnikova, I.L. & Tayban, E.S. & Mukha, S.A. & Netskina, O.V., 2022. "Dehydrogenation of ammonia borane recrystallized by different techniques," Renewable Energy, Elsevier, vol. 184(C), pages 460-472.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2890-:d:1103119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.