IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5895-d1213757.html
   My bibliography  Save this article

Heating Strategies for Efficient Combined Inductive and Convective Heating of Profiles

Author

Listed:
  • Raphael Gergely

    (Institute of Thermal Engineering, Graz University of Technology, Inffeldgasse 25/B/V, 8010 Graz, Austria)

  • Christoph Hochenauer

    (Institute of Thermal Engineering, Graz University of Technology, Inffeldgasse 25/B/V, 8010 Graz, Austria)

Abstract

In this paper, an experimental and numerical study of a novel heating strategy is shown for thin profiled workpieces using induction and convective heating at the same time. A characteristic of induction heating is its potential for achieving efficient local heating due to the direct conversion of electromagnetic fields to thermal energy. One disadvantage of this is the high temperature gradients that occur on the workpiece and, therefore, the uneven distribution. This is even more significant for thin workpieces or workpieces made out of sheet metal due to the lighter mass and, therefore, less conduction away from the heating zone. This paper presents the idea of combining induction heating with convection to obtain a more even distribution of the temperature but with considerable energy savings compared to pure convective heating. The combination of both heating methods has been analysed both experimentally and numerically with different geometries. The multiphysic simulation included both the induction heating and also the convective heat transfer for temperature-dependent material properties. The results of the simulations and the experiments were in good agreement, and both showed that there is a huge potential for energy savings when convective heating is supported by induction heating (up to 53%). This study provides a reference for future industrial applications for heating sheet metal workpieces, e.g., for drying paint.

Suggested Citation

  • Raphael Gergely & Christoph Hochenauer, 2023. "Heating Strategies for Efficient Combined Inductive and Convective Heating of Profiles," Energies, MDPI, vol. 16(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5895-:d:1213757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5895/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5895/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jerzy Barglik & Adrian Smagór & Albert Smalcerz & Debela Geneti Desisa, 2021. "Induction Heating of Gear Wheels in Consecutive Contour Hardening Process," Energies, MDPI, vol. 14(13), pages 1-14, June.
    2. Sang Min Park & Eunsu Jang & Dongmyoung Joo & Byoung Kuk Lee, 2019. "Power Curve-Fitting Control Method with Temperature Compensation and Fast-Response for All-Metal Domestic Induction Heating Systems," Energies, MDPI, vol. 12(15), pages 1-16, July.
    3. Thanaset Thosdeekoraphat & Kittisak Tanthai & Kachaporn Lhathum & Supawat Kotchapradit & Samran Santalunai & Chanchai Thongsopa, 2023. "The Design of a Large-Scale Induction Heating Power Source for Organic Waste Digesters to Produce Fertilizer," Energies, MDPI, vol. 16(5), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pradeep Vishnuram & Suchitra Dayalan & Sudhakar Babu Thanikanti & Karthik Balasubramanian & Benedetto Nastasi, 2021. "Single Source Multi-Frequency AC-AC Converter for Induction Cooking Applications," Energies, MDPI, vol. 14(16), pages 1-21, August.
    2. Senthil Rajan Ramalingam & C. S. Boopthi & Sridhar Ramasamy & Mominul Ahsan & Julfikar Haider, 2021. "Induction Heating for Variably Sized Ferrous and Non-Ferrous Materials through Load Modulation," Energies, MDPI, vol. 14(24), pages 1-18, December.
    3. Roman Musii & Petro Pukach & Nataliia Melnyk & Myroslava Vovk & L’udomír Šlahor, 2023. "Modeling of the Temperature Regimes in a Layered Bimetallic Plate under Short-Term Induction Heating," Energies, MDPI, vol. 16(13), pages 1-12, June.
    4. Feng Wang & Delun Guan & Yatian Li & Jingxuan Zhong, 2022. "Research Progress on Magnetic Catalysts and Its Application in Hydrogen Production Area," Energies, MDPI, vol. 15(15), pages 1-22, July.
    5. Zheng-Feng Li & Jhih-Cheng Hu & Ming-Shi Huang & Yi-Liang Lin & Chun-Wei Lin & Yu-Min Meng, 2022. "Load Estimation for Induction Heating Cookers Based on Series RLC Natural Resonant Current," Energies, MDPI, vol. 15(4), pages 1-19, February.
    6. Pradeep Vishnuram & Gunabalan Ramachandiran & Thanikanti Sudhakar Babu & Benedetto Nastasi, 2021. "Induction Heating in Domestic Cooking and Industrial Melting Applications: A Systematic Review on Modelling, Converter Topologies and Control Schemes," Energies, MDPI, vol. 14(20), pages 1-34, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5895-:d:1213757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.