IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v11y2022i2p21-d746944.html
   My bibliography  Save this article

Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce ( Lactuca sativa L.)

Author

Listed:
  • Sang-Mo Kang

    (Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea)

  • Arjun Adhikari

    (Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea)

  • Dibya Bhatta

    (Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea)

  • Ho-Jun Gam

    (Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea)

  • Min-Ji Gim

    (Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea)

  • Joon-Ik Son

    (Seyen Company, Limited, Kyungsan 38561, Korea)

  • Jin Y. Shin

    (Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, 1638 Bedford Avenue Brooklyn, New York, NY 11225, USA)

  • In-Jung Lee

    (Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea)

Abstract

The current high rate of food waste production, concomitant with the global increase in population and food demand, has adverse effects on environmental and socio-economic conditions. However, food waste has been shown to be an efficient and safe source of fertilizer in agriculture practice. Moreover, minimizing the application of chemical fertilizers is a goal of sustainable agriculture. Considering these facts, we aimed to compare the effect of chemical fertilizer (CF-3,8 g·pot −1 ) and different doses of mixed food waste-derived fertilizer (MF-10.6 g·pot −1 ), two-fold MF (MF × 2), four-fold MF (MF × 4), and six-fold MF (MF × 6) in a popular salad crop, Lactuca sativa (lettuce). Our results showed the growth rates of lettuce plants receiving CF, MF, and MF×2 applications were essentially the same; however, plant biomass significantly dropped with MF × 6 treatment. The CF, MF, and MF × 2 treatments enhanced the chlorophyll content, chlorophyll fluorescence, and photosynthetic rate of the plants and improved transpiration efficiency and stomatal conductance. With respect to mineral elements, the K + content was significantly enhanced with MF × 2 and MF × 4 treatment, whereas MF × 6-treated plants showed lower concentrations of Ca, P, Mg, and K + as well as higher Na + concentration. Biochemical analysis showed the elevation of abscisic acid level with increasing dose of MF, except in the MF × 6 treatment. The level of super oxide dismutase (SOD) dropped with CF treatment, was unchanged with MF, and significantly increased in MF×2 and MF × 4 treated plants. Subsequently, higher flavonoid content was observed in MF×2 and MF×4 plants. The current results demonstrate the potential of food waste as a source of organic fertilizer and a significant substitute for chemical fertilizer in the conventional agricultural practice driven by high production cost and environmental pollution.

Suggested Citation

  • Sang-Mo Kang & Arjun Adhikari & Dibya Bhatta & Ho-Jun Gam & Min-Ji Gim & Joon-Ik Son & Jin Y. Shin & In-Jung Lee, 2022. "Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce ( Lactuca sativa L.)," Resources, MDPI, vol. 11(2), pages 1-12, February.
  • Handle: RePEc:gam:jresou:v:11:y:2022:i:2:p:21-:d:746944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/11/2/21/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/11/2/21/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Happy Anita Appiah Kubi & Muhammad Aaqil Khan & Arjun Adhikari & Muhammad Imran & Sang-Mo Kang & Muhammad Hamayun & In-Jung Lee, 2021. "Silicon and Plant Growth-Promoting Rhizobacteria Pseudomonas psychrotolerans CS51 Mitigates Salt Stress in Zea mays L," Agriculture, MDPI, vol. 11(3), pages 1-15, March.
    2. K. M. Atikur Rahman & Dunfu Zhang, 2018. "Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    3. Simon Kizito & Hongzhen Luo & Jiaxin Lu & Hamidou Bah & Renjie Dong & Shubiao Wu, 2019. "Role of Nutrient-Enriched Biochar as a Soil Amendment during Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand," Sustainability, MDPI, vol. 11(11), pages 1-22, June.
    4. Alon Tal, 2018. "Making Conventional Agriculture Environmentally Friendly: Moving beyond the Glorification of Organic Agriculture and the Demonization of Conventional Agriculture," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    5. Chiew, Yoon Lin & Spångberg, Johanna & Baky, Andras & Hansson, Per-Anders & Jönsson, Håkan, 2015. "Environmental impact of recycling digested food waste as a fertilizer in agriculture—A case study," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huong Thi Thuy Dao & Jeong Min Seo & Jonathan O. Hernandez & Si Ho Han & Woo Bin Youn & Ji Young An & Byung Bae Park, 2020. "Effective Placement Methods of Vermicompost Application in Urban Tree Species: Implications for Sustainable Urban Afforestation," Sustainability, MDPI, vol. 12(14), pages 1-13, July.
    2. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    3. Kalle Margus & Viacheslav Eremeev & Evelin Loit & Eve Runno-Paurson & Erkki Mäeorg & Anne Luik & Liina Talgre, 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    4. Qiuwei Bai & Hongpin Luo & Xinglan Fu & Xin Zhang & Guanglin Li, 2023. "Design and Experiment of Lightweight Dual-Mode Automatic Variable-Rate Fertilization Device and Control System," Agriculture, MDPI, vol. 13(6), pages 1-20, May.
    5. Guillermo Alexis Vergel-Rangel & Pablo Emilio Escamilla-García & Raúl Horacio Camarillo-López & Jair Azael Esquivel-Guzmán & Francisco Pérez-Soto, 2021. "The environmental impact of nopal (Opuntia ficus-indica) production in Mexico City, Mexico through a life cycle assessment (LCA)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18068-18095, December.
    6. Luczka, Wladyslawa, 2023. "Problemy Rozwoju Rolnictwa Ekologicznego w Opinii Rolników," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2023(4).
    7. Hanuman Singh Jatav & Vishnu D. Rajput & Tatiana Minkina & Satish Kumar Singh & Sukirtee Chejara & Andrey Gorovtsov & Anatoly Barakhov & Tatiana Bauer & Svetlana Sushkova & Saglara Mandzhieva & Marina, 2021. "Sustainable Approach and Safe Use of Biochar and Its Possible Consequences," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    8. Marzena Smol & Paulina Marcinek & Zuzana Šimková & Tomáš Bakalár & Milan Hemzal & Jiří Jaromír Klemeš & Yee Van Fan & Kinga Lorencz & Eugeniusz Koda & Anna Podlasek, 2022. "Inventory of Good Practices of Sustainable and Circular Phosphorus Management in the Visegrad Group (V4)," Resources, MDPI, vol. 12(1), pages 1-17, December.
    9. Victor Funso Agunbiade & Olubukola Oluranti Babalola, 2023. "Endophytic and rhizobacteria functionalities in alleviating drought stress in maize plants," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 59(1), pages 1-18.
    10. Jiri Holatko & Tereza Hammerschmiedt & Antonin Kintl & Subhan Danish & Petr Skarpa & Oldrich Latal & Tivadar Baltazar & Shah Fahad & Hanife Akça & Suleyman Taban & Eliska Kobzova & Rahul Datta & Ondre, 2021. "Effect of carbon-enriched digestate on the microbial soil activity," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-13, July.
    11. Mushtaq Ahmad Khan & Abdul Basir & Syed Tanveer Shah & Monsif Ur Rehman & Mehmood ul Hassan & Hongbing Zheng & Abdul Basit & Árpád Székely & Aftab Jamal & Emanuele Radicetti & Yaser Hassan Dewir & Rob, 2024. "Sustainable Soil Management in Alkaline Soils: The Role of Biochar and Organic Nitrogen in Enhancing Soil Fertility," Land, MDPI, vol. 13(11), pages 1-17, November.
    12. Wladyslawa Luczka & Joanna Smoluk-Sikorska & Julia Wojciechowska-Solis, 2024. "Opportunities and Barriers to the Development of Organic Farming from the Perspective of Conventional Farms," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 607-619.
    13. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    14. Mekuanint Lewoyehu & Yudai Kohira & Desalew Fentie & Solomon Addisu & Shinjiro Sato, 2024. "Water Hyacinth Biochar: A Sustainable Approach for Enhancing Soil Resistance to Acidification Stress and Nutrient Dynamics in an Acidic Nitisol of the Northwest Highlands of Ethiopia," Sustainability, MDPI, vol. 16(13), pages 1-25, June.
    15. Azhari, Mohamed El & Hamadi, Youssef El & Boughlala, Mohamed & Hattab, Samia, 2024. "Factors Affecting the Adoption of Recommended Fertilizer Doses by Wheat Farmers in the Casablanca-Settat Region of Morocco," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 16(2), June.
    16. Wang, Xiukang & Guo, Tao & Wang, Yi & Xing, Yingying & Wang, Yanfeng & He, Xiaolong, 2020. "Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA," Agricultural Water Management, Elsevier, vol. 237(C).
    17. Mona Mijthab & Raluca Anisie & Omar Crespo, 2021. "Mosan: Combining Circularity and Participatory Design to Address Sanitation in Low-Income Communities," Circular Economy and Sustainability, Springer, vol. 1(3), pages 1165-1191, November.
    18. Qiangsheng Wang & Kunlong Yu & Hui Zhang, 2022. "Controlled-Release Fertilizer Improves Rice Matter Accumulation Characteristics and Yield in Rice–Crayfish Coculture," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    19. Hongyu Wang & Apurbo Sarkar & Lu Qian, 2021. "Evaluations of the Roles of Organizational Support, Organizational Norms and Organizational Learning for Adopting Environmentally Friendly Technologies: A Case of Kiwifruit Farmers’ Cooperatives of Me," Land, MDPI, vol. 10(3), pages 1-23, March.
    20. Olayinka Omotosho & Adebayo Oke & Azarel Uthman & Adekunle Atta & Emmanuel Ezaka, 2021. "Development of a manually operated organic and inorganic fertiliser applicator for smallholder farmers," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(2), pages 51-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:11:y:2022:i:2:p:21-:d:746944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.