IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2062-d1074454.html
   My bibliography  Save this article

Energetic, Economic and Environmental (3E) Analysis of a RES-Waste Gasification Plant with Syngas Storage Cooperation

Author

Listed:
  • Jacek Roman

    (Institute of Electrical Power Engineering, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 5 Piotrowo Street, 61-138 Poznan, Poland)

  • Robert Wróblewski

    (Institute of Electrical Power Engineering, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 5 Piotrowo Street, 61-138 Poznan, Poland)

  • Beata Klojzy-Karczmarczyk

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, 7A J. Wybickiego Street, 31-261 Krakow, Poland)

  • Bartosz Ceran

    (Institute of Electrical Power Engineering, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 5 Piotrowo Street, 61-138 Poznan, Poland)

Abstract

Today, the increasing amount of waste is a growing ecological and financial problem. Another issue is the need to limit the share of controllable sources powered by fossil fuels. A hybrid generation system (HGS) is proposed to solve both problems. The system consists of renewable energy sources (RES) and a waste gasification system. Contrary to many papers, it is proposed to include syngas storage and use gas turbines as balancing sources. The HGS was modeled, and electricity generation, capacity factors, and efficiencies were calculated. The economic (LCOE and PP) and environmental parameters (CO 2 emission and reduction) were analyzed and calculated for different RES capacities. The results show that the proposed HGS covered 45.7–80% of municipal demand. The HGS was characterized by high CO 2 emissions, due to the low efficiency of gasification-gas turbine installation and the need to compress syngas. However, the HGS can be environmentally beneficial due to the reduction in waste disposal in landfills. The LCOE was EUR 174–191 with a minimum at the RES capacity of 14 MW. Any change in waste disposal costs and emission allowances would cause significant changes in the LCOE. It was found that it can be beneficial to use a gasification system as a balancing source in a HGS.

Suggested Citation

  • Jacek Roman & Robert Wróblewski & Beata Klojzy-Karczmarczyk & Bartosz Ceran, 2023. "Energetic, Economic and Environmental (3E) Analysis of a RES-Waste Gasification Plant with Syngas Storage Cooperation," Energies, MDPI, vol. 16(4), pages 1-29, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2062-:d:1074454
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2062/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2062/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alvaro Quiles Garcia & Naoya Nishiumi & Atsushi Saito & Eriko Matsumura & Jiro Senda, 2021. "Economic, Environmental and Energetic Analysis of a Distributed Generation System Composed by Waste Gasification and Photovoltaic Panels," Energies, MDPI, vol. 14(13), pages 1-15, June.
    2. Bartosz Ceran & Agata Orłowska, 2019. "The Impact of Power Source Performance Decrease in a PV/WT/FC Hybrid Power Generation System on the Result of a Multi-Criteria Analysis of Load Distribution," Energies, MDPI, vol. 12(18), pages 1-19, September.
    3. Esmaili, Ehsan & Mostafavi, Ehsan & Mahinpey, Nader, 2016. "Economic assessment of integrated coal gasification combined cycle with sorbent CO2 capture," Applied Energy, Elsevier, vol. 169(C), pages 341-352.
    4. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    5. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    6. Pérez-Navarro, A. & Alfonso, D. & Ariza, H.E. & Cárcel, J. & Correcher, A. & Escrivá-Escrivá, G. & Hurtado, E. & Ibáñez, F. & Peñalvo, E. & Roig, R. & Roldán, C. & Sánchez, C. & Segura, I. & Vargas, C, 2016. "Experimental verification of hybrid renewable systems as feasible energy sources," Renewable Energy, Elsevier, vol. 86(C), pages 384-391.
    7. Zahida Aslam & Hu Li & James Hammerton & Gordon Andrews & Andrew Ross & Jon C. Lovett, 2021. "Increasing Access to Electricity: An Assessment of the Energy and Power Generation Potential from Biomass Waste Residues in Tanzania," Energies, MDPI, vol. 14(6), pages 1-22, March.
    8. Santiago Alzate & Bonie Restrepo-Cuestas & Álvaro Jaramillo-Duque, 2019. "Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios," Resources, MDPI, vol. 8(1), pages 1-16, March.
    9. Diamantis Almpantis & Anastasia Zabaniotou, 2021. "Technological Solutions and Tools for Circular Bioeconomy in Low-Carbon Transition: Simulation Modeling of Rice Husks Gasification for CHP by Aspen PLUS V9 and Feasibility Study by Aspen Process Econo," Energies, MDPI, vol. 14(7), pages 1-25, April.
    10. Rezaei, Mahdi & Ghobadian, Barat & Samadi, Seyed Hashem & Karimi, Samira, 2018. "Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran," Energy, Elsevier, vol. 152(C), pages 46-56.
    11. Esfilar, Reza & Bagheri, Mehdi & Golestani, Behrooz, 2021. "Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    12. Ali Eliasu & Nana Sarfo Agyemang Derkyi & Samuel Gyamfi, 2022. "Techno-Economic Analysis of Municipal Solid Waste Gasification for Electricity Generation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 342-348.
    13. Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
    14. Singh, Arashdeep & Basak, Prasenjit, 2022. "Conceptualization and techno-economic evaluation of municipal solid waste based microgrid," Energy, Elsevier, vol. 238(PB).
    15. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    16. Ribó-Pérez, David & Bastida-Molina, Paula & Gómez-Navarro, Tomás & Hurtado-Pérez, Elías, 2020. "Hybrid assessment for a hybrid microgrid: A novel methodology to critically analyse generation technologies for hybrid microgrids," Renewable Energy, Elsevier, vol. 157(C), pages 874-887.
    17. Chaudhary Awais Salman & Ch Bilal Omer, 2020. "Process Modelling and Simulation of Waste Gasification-Based Flexible Polygeneration Facilities for Power, Heat and Biofuels Production," Energies, MDPI, vol. 13(16), pages 1-22, August.
    18. Hernández, J.J. & Ballesteros, R. & Aranda, G., 2013. "Characterisation of tars from biomass gasification: Effect of the operating conditions," Energy, Elsevier, vol. 50(C), pages 333-342.
    19. Bagheri, Mehdi & Shirzadi, Navid & Bazdar, Elahe & Kennedy, Christopher A., 2018. "Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 254-264.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Calì & Paolo Deiana & Claudia Bassano & Simone Meloni & Enrico Maggio & Michele Mascia & Alberto Pettinau, 2020. "Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit," Energies, MDPI, vol. 13(10), pages 1-15, May.
    2. Zhang, Ziyin & Pang, Shusheng, 2019. "Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier," Renewable Energy, Elsevier, vol. 132(C), pages 416-424.
    3. Fernandez, Enara & Santamaria, Laura & Amutio, Maider & Artetxe, Maite & Arregi, Aitor & Lopez, Gartzen & Bilbao, Javier & Olazar, Martin, 2022. "Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor," Energy, Elsevier, vol. 238(PC).
    4. Jiang, Shengjuan & Hu, Xun & Xia, Daohong & Li, Chun-Zhu, 2016. "Formation of aromatic ring structures during the thermal treatment of mallee wood cylinders at low temperature," Applied Energy, Elsevier, vol. 183(C), pages 542-551.
    5. Bastida-Molina, Paula & Hurtado-Pérez, Elías & Moros Gómez, María Cristina & Vargas-Salgado, Carlos, 2021. "Multicriteria power generation planning and experimental verification of hybrid renewable energy systems for fast electric vehicle charging stations," Renewable Energy, Elsevier, vol. 179(C), pages 737-755.
    6. Hani Al-Rawashdeh & Omar Ali Al-Khashman & Jehad T. Al Bdour & Mohamed R. Gomaa & Hegazy Rezk & Abdullah Marashli & Laith M. Arrfou & Mohamed Louzazni, 2023. "Performance Analysis of a Hybrid Renewable-Energy System for Green Buildings to Improve Efficiency and Reduce GHG Emissions with Multiple Scenarios," Sustainability, MDPI, vol. 15(9), pages 1-32, May.
    7. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    8. Octávio Alves & Luís Calado & Roberta M. Panizio & Catarina Nobre & Eliseu Monteiro & Paulo Brito & Margarida Gonçalves, 2022. "Gasification of Solid Recovered Fuels with Variable Fractions of Polymeric Materials," Energies, MDPI, vol. 15(21), pages 1-19, November.
    9. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    10. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    11. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    12. Liu, Zihan & Li, Pan & Chang, Chun & Wang, Xianhua & Song, Jiande & Fang, Shuqi & Pang, Shusheng, 2022. "Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis," Energy, Elsevier, vol. 250(C).
    13. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2020. "Energy performance investigation of net plus energy town: Energy balance of the Jincheon Eco-Friendly energy town," Renewable Energy, Elsevier, vol. 147(P1), pages 1784-1800.
    14. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    15. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    16. Zane Vincevica-Gaile & Varvara Sachpazidou & Valdis Bisters & Maris Klavins & Olga Anne & Inga Grinfelde & Emil Hanc & William Hogland & Muhammad Asim Ibrahim & Yahya Jani & Mait Kriipsalu & Divya Pal, 2022. "Applying Macroalgal Biomass as an Energy Source: Utility of the Baltic Sea Beach Wrack for Thermochemical Conversion," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    17. Neves, Daniel & Thunman, Henrik & Tarelho, Luís & Larsson, Anton & Seemann, Martin & Matos, Arlindo, 2014. "Method for online measurement of the CHON composition of raw gas from biomass gasifier," Applied Energy, Elsevier, vol. 113(C), pages 932-945.
    18. Berrueco, C. & Montané, D. & Matas Güell, B. & del Alamo, G., 2014. "Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed," Energy, Elsevier, vol. 66(C), pages 849-859.
    19. Mwaka I. Juma & Bakari M. M. Mwinyiwiwa & Consalva J. Msigwa & Aviti T. Mushi, 2021. "Design of a Hybrid Energy System with Energy Storage for Standalone DC Microgrid Application," Energies, MDPI, vol. 14(18), pages 1-15, September.
    20. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2062-:d:1074454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.