IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224025866.html
   My bibliography  Save this article

Design and on-site alert effect of piezoelectric device with amplified displacement for improving clean-energy collection

Author

Listed:
  • Wang, Chaohui
  • Liu, Jikang
  • Yuan, Huazhi
  • Wang, Shuai
  • Jia, Xiaodong
  • Lu, Qiang

Abstract

The installation of road alert devices leads to increased power consumption and electric network complexity on roads, which can be mitigated by cantilever piezoelectric transducers applicable to self-powered road alert devices. However, currently the cantilever piezoelectric transducer does not match the actual pavement deformation. In view of this, the link-type stroke amplification mechanism for road was designed. Then, the factors influencing the magnification were clarified and the size parameters were optimized. Finally, the performance of the piezoelectric transducer array under the amplification mechanism was investigated, and the traffic alert application effect of the amplified displacement road piezoelectric device was tested. The results showed that: The end connecting rod with short length and small distance and the middle connecting rod with longer length were favorable to the magnification. The theoretical magnification of the fabricated stroke amplification mechanism is 2.0. Under its action, the 0.7 mm excitation displacement could result in piezoelectric transducer array electrical outputs of 48 V, 103.96 mW, and power densities of 32.1 W/m2. And the alert piezoelectric self-powered effect was good based on the actual road test. The results will help improve the level of road alert self-powered, and promote the development of clean energy on the road.

Suggested Citation

  • Wang, Chaohui & Liu, Jikang & Yuan, Huazhi & Wang, Shuai & Jia, Xiaodong & Lu, Qiang, 2024. "Design and on-site alert effect of piezoelectric device with amplified displacement for improving clean-energy collection," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224025866
    DOI: 10.1016/j.energy.2024.132812
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224025866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224025866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.