IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1977-d1070841.html
   My bibliography  Save this article

Recent Progress and Challenges in MXene-Based Phase Change Material for Solar and Thermal Energy Applications

Author

Listed:
  • Hafiz Taimoor Ahmed Awan

    (Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya 47500, Malaysia)

  • Laveet Kumar

    (Department of Mechanical Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan)

  • Weng Pin Wong

    (Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya 47500, Malaysia
    Department of Chemical Engineering, School of New Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia)

  • Rashmi Walvekar

    (Department of Chemical Engineering, School of New Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia)

  • Mohammad Khalid

    (Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya 47500, Malaysia
    Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, Petaling Jaya 47500, Malaysia
    School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India)

Abstract

Energy storage is becoming a critical issue due to the diminishing availability of fossil fuels and the intermittent nature of current renewable energy sources. As a result, thermal management (TM) and thermal energy systems have gained significant attention due to their crucial roles in various industries. Among the different TM materials, MXenes, a member of the transition metal carbide/nitride family, have emerged as a promising material due to their unique 2D nanostructure, changeable surface chemistry, high electrical/thermal conductivity, light absorptivity, and low infrared emissivity. This review outlines the synthesis methods of MXenes and their various features and applications in thermal management. These 2D materials exhibit outstanding optical and thermal properties, making them suitable for thermal energy generation and storage. The study also covers the potential applications of MXene in the desalination industry, hybrid photovoltaic thermal systems, solar energy storage, electronics, and other thermal management related industries. The findings suggest that MXene-based TM materials have remarkable features that significantly influence thermal energy storage and conversion and present opportunities for further research in efficiently using these materials.

Suggested Citation

  • Hafiz Taimoor Ahmed Awan & Laveet Kumar & Weng Pin Wong & Rashmi Walvekar & Mohammad Khalid, 2023. "Recent Progress and Challenges in MXene-Based Phase Change Material for Solar and Thermal Energy Applications," Energies, MDPI, vol. 16(4), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1977-:d:1070841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1977/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1977/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2008. "Heat transfer characteristics of thermal energy storage system using PCM capsules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2438-2458, December.
    2. Yanfei Xu & Daniel Kraemer & Bai Song & Zhang Jiang & Jiawei Zhou & James Loomis & Jianjian Wang & Mingda Li & Hadi Ghasemi & Xiaopeng Huang & Xiaobo Li & Gang Chen, 2019. "Nanostructured polymer films with metal-like thermal conductivity," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Oró, Eduard & Barreneche, Camila & Farid, Mohammed M. & Cabeza, Luisa F., 2013. "Experimental study on the selection of phase change materials for low temperature applications," Renewable Energy, Elsevier, vol. 57(C), pages 130-136.
    4. Peng Tao & George Ni & Chengyi Song & Wen Shang & Jianbo Wu & Jia Zhu & Gang Chen & Tao Deng, 2018. "Solar-driven interfacial evaporation," Nature Energy, Nature, vol. 3(12), pages 1031-1041, December.
    5. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    6. Baozhong Lü & Yifa Chen & Pengyu Li & Bo Wang & Klaus Müllen & Meizhen Yin, 2019. "Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    7. Valerio Lo Brano & Giuseppina Ciulla & Antonio Piacentino & Fabio Cardona, 2013. "On the Efficacy of PCM to Shave Peak Temperature of Crystalline Photovoltaic Panels: An FDM Model and Field Validation," Energies, MDPI, vol. 6(12), pages 1-23, November.
    8. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    9. Du, Yu & Huang, Haowei & Hu, Xinpeng & Liu, Shuang & Sheng, Xinxin & Li, Xiaolong & Lu, Xiang & Qu, Jinping, 2021. "Melamine foam/polyethylene glycol composite phase change material synergistically modified by polydopamine/MXene with enhanced solar-to-thermal conversion," Renewable Energy, Elsevier, vol. 171(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nithesh Naik & P. Suresh & Sanjay Yadav & M. P. Nisha & José Luis Arias-Gonzáles & Juan Carlos Cotrina-Aliaga & Ritesh Bhat & Manohara D. Jalageri & Yashaarth Kaushik & Aakif Budnar Kunjibettu, 2023. "A Review on Composite Materials for Energy Harvesting in Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    2. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    3. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    4. Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.
    5. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    6. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    7. Murray, Robynne E. & Groulx, Dominic, 2014. "Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging," Renewable Energy, Elsevier, vol. 62(C), pages 571-581.
    8. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    9. Royo, Patricia & Ferreira, Víctor J. & López-Sabirón, Ana M. & Ferreira, Germán, 2016. "Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials," Energy, Elsevier, vol. 101(C), pages 174-189.
    10. He, Fang & Wang, Xiaodong & Wu, Dezhen, 2014. "New approach for sol–gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor," Energy, Elsevier, vol. 67(C), pages 223-233.
    11. Iten, Muriel & Liu, Shuli & Shukla, Ashish, 2016. "A review on the air-PCM-TES application for free cooling and heating in the buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 175-186.
    12. Bose, Prabhu & Amirtham, Valan Arasu, 2016. "A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 81-100.
    13. Calvet, Nicolas & Py, Xavier & Olivès, Régis & Bédécarrats, Jean-Pierre & Dumas, Jean-Pierre & Jay, Frédéric, 2013. "Enhanced performances of macro-encapsulated phase change materials (PCMs) by intensification of the internal effective thermal conductivity," Energy, Elsevier, vol. 55(C), pages 956-964.
    14. Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
    15. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
    16. Zahir, Md. Hasan & Mohamed, Shamseldin A. & Saidur, R. & Al-Sulaiman, Fahad A., 2019. "Supercooling of phase-change materials and the techniques used to mitigate the phenomenon," Applied Energy, Elsevier, vol. 240(C), pages 793-817.
    17. Cárdenas, Bruno & León, Noel, 2013. "High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 724-737.
    18. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    19. Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
    20. Browne, Maria C. & Boyd, Ellen & McCormack, Sarah J., 2017. "Investigation of the corrosive properties of phase change materials in contact with metals and plastic," Renewable Energy, Elsevier, vol. 108(C), pages 555-568.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1977-:d:1070841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.