Melamine foam/polyethylene glycol composite phase change material synergistically modified by polydopamine/MXene with enhanced solar-to-thermal conversion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.02.077
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Beust, Clément & Franquet, Erwin & Bédécarrats, Jean-Pierre & Garcia, Pierre, 2020. "Predictive approach of heat transfer for the modelling of large-scale latent heat storages," Renewable Energy, Elsevier, vol. 157(C), pages 502-514.
- Wang, Chengjun & Liang, Weidong & Yang, Yueyue & Liu, Fang & Sun, Hanxue & Zhu, Zhaoqi & Li, An, 2020. "Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage," Renewable Energy, Elsevier, vol. 153(C), pages 182-192.
- Li, Minqi & Lin, Zhongqi & Sun, Yongjun & Wu, Fengping & Xu, Tao & Wu, Huijun & Zhou, Xiaoqing & Wang, Dengjia & Liu, Yanfeng, 2020. "Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems," Renewable Energy, Elsevier, vol. 157(C), pages 670-677.
- Guo, Feng & Zou, Hongtao & Yao, Qilu & Huang, Bin & Lu, Zhang-Hui, 2020. "Monodispersed bimetallic nanoparticles anchored on TiO2-decorated titanium carbide MXene for efficient hydrogen production from hydrazine in aqueous solution," Renewable Energy, Elsevier, vol. 155(C), pages 1293-1301.
- Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Taofen & Wu, Dan & Deng, Yong & Luo, Dajun & Wu, Fuzhong & Dai, Xinyi & Lu, Jia & Sun, Shuya, 2024. "Three-dimensional network-based composite phase change materials: Construction, structure, performance and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Hafiz Taimoor Ahmed Awan & Laveet Kumar & Weng Pin Wong & Rashmi Walvekar & Mohammad Khalid, 2023. "Recent Progress and Challenges in MXene-Based Phase Change Material for Solar and Thermal Energy Applications," Energies, MDPI, vol. 16(4), pages 1-27, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Jiaji & Niu, Shaoshuai & Kang, Moyun & Liu, Yuqi & Zhang, Feng & Qu, Wenjuan & Guan, Yu & Li, Shaoxiang, 2022. "The thermal behavior and flame retardant performance of phase change material microcapsules with modified carbon nanotubes," Energy, Elsevier, vol. 240(C).
- Mariusz Niekurzak & Wojciech Lewicki & Hasan Huseyin Coban & Agnieszka Brelik, 2023. "Conceptual Design of a Semi-Automatic Process Line for Recycling Photovoltaic Panels as a Way to Ecological Sustainable Production," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
- Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
- Biesuz, Mattia & Valentini, Francesco & Bortolotti, Mauro & Zambotti, Andrea & Cestari, Francesca & Bruni, Angela & Sglavo, Vincenzo M. & Sorarù, Gian D. & Dorigato, Andrea & Pegoretti, Alessandro, 2021. "Biogenic architectures for green, cheap, and efficient thermal energy storage and management," Renewable Energy, Elsevier, vol. 178(C), pages 96-107.
- Ren, Miao & Zhao, Hua & Gao, Xiaojian, 2022. "Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar," Energy, Elsevier, vol. 241(C).
- Jiang, Liang & Lei, Yuan & Liu, Qinfeng & Lei, Jingxin, 2020. "Polyethylene glycol based self-luminous phase change materials for both thermal and light energy storage," Energy, Elsevier, vol. 193(C).
- Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
- Huo, Ying-Jie & Yan, Ting & Wu, Shao-Fei & Kuai, Zi-Han & Pan, Wei-Guo, 2024. "Preparation and thermal properties of palmitic acid/copper foam phase change materials," Energy, Elsevier, vol. 293(C).
- Cong Zhou & Yizhen Li & Fenghao Wang & Zeyuan Wang & Qing Xia & Yuping Zhang & Jun Liu & Boyang Liu & Wanlong Cai, 2023. "A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System," Energies, MDPI, vol. 16(6), pages 1-21, March.
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Yaoge Jing & Zhengchuang Zhao & Xiaoling Cao & Qinrong Sun & Yanping Yuan & Tingxian Li, 2023. "Ultraflexible, cost-effective and scalable polymer-based phase change composites via chemical cross-linking for wearable thermal management," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
- Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
- Wang, Chongwei & Cheng, Chuanxiao & Jin, Tingxiang & Dong, Hongsheng, 2022. "Water evaporation inspired biomass-based PCM from daisy stem and paraffin for building temperature regulation," Renewable Energy, Elsevier, vol. 194(C), pages 211-219.
- Chen, Changzhong & Chen, Rong & Zhao, Tangyuan & Wang, Linge, 2022. "A comparative study of linear polyurea and crosslinked polyurea as supports to stabilize polyethylene glycol for thermal energy storage," Renewable Energy, Elsevier, vol. 183(C), pages 535-547.
- Zeneli, M. & Malgarinos, I. & Nikolopoulos, A. & Nikolopoulos, N. & Grammelis, P. & Karellas, S. & Kakaras, E., 2019. "Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures," Applied Energy, Elsevier, vol. 242(C), pages 837-853.
- Zhang, Ya & Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2020. "Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management," Applied Energy, Elsevier, vol. 264(C).
- Liu, Chenzhen & Cheng, Qingjiang & Li, Baohuan & Liu, Xinjian & Rao, Zhonghao, 2023. "Recent advances of sugar alcohols phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.
- Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
More about this item
Keywords
Composite phase change materials; Melamine foam; Polydopamine; MXene; Solar-to-thermal conversion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:1-10. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.