IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v62y2014icp571-581.html
   My bibliography  Save this article

Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging

Author

Listed:
  • Murray, Robynne E.
  • Groulx, Dominic

Abstract

Solar domestic hot water (SDHW) systems are a cost effective and efficient way to pre-heat domestic water for hot water use in buildings. Currently used sensible energy storage systems (commonly using water as the storage medium) are simple and inexpensive, but require large amounts of storage material, and therefore are heavy and take up considerable space. Latent heat energy storage systems (LHESS) store the energy absorbed/released when a material goes through a phase transition: these materials are called phase change materials (PCMs). Because of the large quantities of energy that are stored during a phase change, latent heat energy storage is more dense than sensible energy storage, and can therefore reduce the weight and space requirements of the energy storage system. The main objective of this research is to study the heat transfer processes and phase change behavior of a PCM during consecutive charging and discharging of a LHESS. This leads to better understanding of the melting and solidification processes in order to optimize future LHESS design.

Suggested Citation

  • Murray, Robynne E. & Groulx, Dominic, 2014. "Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging," Renewable Energy, Elsevier, vol. 62(C), pages 571-581.
  • Handle: RePEc:eee:renene:v:62:y:2014:i:c:p:571-581
    DOI: 10.1016/j.renene.2013.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113004084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2008. "Heat transfer characteristics of thermal energy storage system using PCM capsules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2438-2458, December.
    2. Ettouney, Hisham M. & Alatiqi, Imad & Al-Sahali, Mohammad & Ahmad Al-Ali, Safaa, 2004. "Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems," Renewable Energy, Elsevier, vol. 29(6), pages 841-860.
    3. Belen Zalba & Belen Sanchez-valverde & Jose Marin, 2005. "An experimental study of thermal energy storage with phase change materials by design of experiments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(4), pages 321-332.
    4. Agyenim, Francis & Eames, Philip & Smyth, Mervyn, 2011. "Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling syst," Renewable Energy, Elsevier, vol. 36(1), pages 108-117.
    5. Sharma, Atul & Won, Lee Dong & Buddhi, D & Park, Jun Un, 2005. "Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system," Renewable Energy, Elsevier, vol. 30(14), pages 2179-2187.
    6. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    7. Jegadheeswaran, S. & Pohekar, Sanjay D., 2009. "Performance enhancement in latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2225-2244, December.
    8. Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2006. "Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 31(13), pages 2025-2041.
    9. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    10. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    2. Kumar, Ashish & Saha, Sandip K., 2021. "Performance study of a novel funnel shaped shell and tube latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 165(P1), pages 731-747.
    3. Fang, Y. & Qu, Z.G. & Zhang, J.F. & Xu, H.T. & Qi, G.L., 2020. "Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material," Applied Energy, Elsevier, vol. 275(C).
    4. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    6. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    7. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
    8. Huang, Shengyao & Lv, Laiquan & Rong, Yan & Zhou, Hao, 2024. "Experimental study on the thermal characteristics of a visualized shell-and-tube LHTES system at different endothermic and exothermic temperatures," Renewable Energy, Elsevier, vol. 221(C).
    9. Kirincic, Mateo & Trp, Anica & Lenic, Kristian, 2021. "Influence of natural convection during melting and solidification of paraffin in a longitudinally finned shell-and-tube latent thermal energy storage on the applicability of developed numerical models," Renewable Energy, Elsevier, vol. 179(C), pages 1329-1344.
    10. V, Krishna Raj & V, Baiju, 2023. "Enhancing thermal performance of latent heat storage unit for solar cooling: A hybrid approach with C-shaped fins and nano-additives," Applied Energy, Elsevier, vol. 351(C).
    11. Mohamed Fadl & Philip Eames, 2020. "Thermal Performance Analysis of the Charging/Discharging Process of a Shell and Horizontally Oriented Multi-Tube Latent Heat Storage System," Energies, MDPI, vol. 13(23), pages 1-23, November.
    12. Tao, Y.B. & He, Y.L., 2015. "Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube," Applied Energy, Elsevier, vol. 143(C), pages 38-46.
    13. Liang, L. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Chen, C.Q., 2021. "Experimental and numerical investigations of latent thermal energy storage using combined flat micro-heat pipe array–metal foam configuration: Simultaneous charging and discharging," Renewable Energy, Elsevier, vol. 171(C), pages 416-430.
    14. Luu, Minh Tri & Milani, Dia & Nomvar, Mobin & Abbas, Ali, 2020. "A design protocol for enhanced discharge exergy in phase change material heat battery," Applied Energy, Elsevier, vol. 265(C).
    15. Wenwen Ye & Dourna Jamshideasli & Jay M. Khodadadi, 2023. "Improved Performance of Latent Heat Energy Storage Systems in Response to Utilization of High Thermal Conductivity Fins," Energies, MDPI, vol. 16(3), pages 1-83, January.
    16. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    17. Yang, Moucun & Moghimi, M.A. & Loillier, R. & Markides, C.N. & Kadivar, M., 2023. "Design of a latent heat thermal energy storage system under simultaneous charging and discharging for solar domestic hot water applications," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
    2. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    3. Jegadheeswaran, S. & Pohekar, S.D. & Kousksou, T., 2010. "Exergy based performance evaluation of latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2580-2595, December.
    4. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    5. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    6. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    7. Murray, Robynne E. & Groulx, Dominic, 2014. "Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 2 simultaneous charging and discharging," Renewable Energy, Elsevier, vol. 63(C), pages 724-734.
    8. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    9. Bose, Prabhu & Amirtham, Valan Arasu, 2016. "A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 81-100.
    10. Cárdenas, Bruno & León, Noel, 2013. "High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 724-737.
    11. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    12. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    13. Calvet, Nicolas & Py, Xavier & Olivès, Régis & Bédécarrats, Jean-Pierre & Dumas, Jean-Pierre & Jay, Frédéric, 2013. "Enhanced performances of macro-encapsulated phase change materials (PCMs) by intensification of the internal effective thermal conductivity," Energy, Elsevier, vol. 55(C), pages 956-964.
    14. Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
    15. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    16. Al-Abidi, Abduljalil A. & Bin Mat, Sohif & Sopian, K. & Sulaiman, M.Y. & Lim, C.H. & Th, Abdulrahman, 2012. "Review of thermal energy storage for air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5802-5819.
    17. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    18. Jegadheeswaran, S. & Pohekar, Sanjay D., 2009. "Performance enhancement in latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2225-2244, December.
    19. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    20. Li, Y.Q. & He, Y.L. & Song, H.J. & Xu, C. & Wang, W.W., 2013. "Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials," Renewable Energy, Elsevier, vol. 59(C), pages 92-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:62:y:2014:i:c:p:571-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.