IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1760-d1063979.html
   My bibliography  Save this article

Vibration Fault Detection in Wind Turbines Based on Normal Behaviour Models without Feature Engineering

Author

Listed:
  • Stefan Jonas

    (School of Engineering and Computer Science, Bern University of Applied Sciences, Quellgasse 21, 2501 Biel, Switzerland)

  • Dimitrios Anagnostos

    (WinJi AG, Badenerstrasse 808, 8048 Zurich, Switzerland)

  • Bernhard Brodbeck

    (WinJi AG, Badenerstrasse 808, 8048 Zurich, Switzerland)

  • Angela Meyer

    (School of Engineering and Computer Science, Bern University of Applied Sciences, Quellgasse 21, 2501 Biel, Switzerland)

Abstract

Most wind turbines are remotely monitored 24/7 to allow for early detection of operation problems and developing damage. We present a new fault detection approach for vibration-monitored drivetrains that does not require any feature engineering. Our method relies on a simple model architecture to enable a straightforward implementation in practice. We propose to apply convolutional autoencoders for identifying and extracting the most relevant features from a broad continuous range of the spectrum in an automated manner, saving time and effort. We focus on the range of [0, 1000] Hz for demonstration purposes. A spectral model of the normal vibration response is learnt for the monitored component from past measurements. We demonstrate that the trained model can successfully distinguish damaged from healthy components and detect a damaged generator bearing and damaged gearbox parts from their vibration responses. Using measurements from commercial wind turbines and a test rig, we show that vibration-based fault detection in wind turbine drivetrains can be performed without the usual upfront definition of spectral features. Another advantage of the presented method is that a broad continuous range of the spectrum can be monitored instead of the usual focus on monitoring individual frequencies and harmonics. Future research should investigate the proposed method on more comprehensive datasets and fault types.

Suggested Citation

  • Stefan Jonas & Dimitrios Anagnostos & Bernhard Brodbeck & Angela Meyer, 2023. "Vibration Fault Detection in Wind Turbines Based on Normal Behaviour Models without Feature Engineering," Energies, MDPI, vol. 16(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1760-:d:1063979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angela Meyer, 2022. "Vibration Fault Diagnosis in Wind Turbines Based on Automated Feature Learning," Energies, MDPI, vol. 15(4), pages 1-13, February.
    2. Feng, Zhipeng & Qin, Sifeng & Liang, Ming, 2016. "Time–frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions," Renewable Energy, Elsevier, vol. 85(C), pages 45-56.
    3. Teng, Wei & Ding, Xian & Cheng, Hao & Han, Chen & Liu, Yibing & Mu, Haihua, 2019. "Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform," Renewable Energy, Elsevier, vol. 136(C), pages 393-402.
    4. Meyer, Angela, 2021. "Multi-target normal behaviour models for wind farm condition monitoring," Applied Energy, Elsevier, vol. 300(C).
    5. Teng, Wei & Ding, Xian & Zhang, Xiaolong & Liu, Yibing & Ma, Zhiyong, 2016. "Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform," Renewable Energy, Elsevier, vol. 93(C), pages 591-598.
    6. Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabie Aloui & Raoudha Gaha & Barbara Lafarge & Berk Celik & Caroline Verdari, 2024. "Life Cycle Assessment of Piezoelectric Devices Implemented in Wind Turbine Condition Monitoring Systems," Energies, MDPI, vol. 17(16), pages 1-20, August.
    2. K. Ramakrishna Kini & Fouzi Harrou & Muddu Madakyaru & Ying Sun, 2023. "Enhancing Wind Turbine Performance: Statistical Detection of Sensor Faults Based on Improved Dynamic Independent Component Analysis," Energies, MDPI, vol. 16(15), pages 1-25, August.
    3. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    4. Piotr Sokolski, 2023. "Assessment of Suitability for Long-Term Operation of a Bucket Elevator: A Case Study," Energies, MDPI, vol. 16(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin, Ge & Hamzaoui, Nacer & Antoni, Jérôme, 2020. "Extraction of second-order cyclostationary sources by matching instantaneous power spectrum with stochastic model – application to wind turbine gearbox," Renewable Energy, Elsevier, vol. 147(P1), pages 1739-1758.
    2. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    3. Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
    4. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.
    5. Pan, Yubin & Hong, Rongjing & Chen, Jie & Wu, Weiwei, 2020. "A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox," Renewable Energy, Elsevier, vol. 152(C), pages 138-154.
    6. Liu, Dongdong & Cui, Lingli & Cheng, Weidong, 2023. "Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation," Renewable Energy, Elsevier, vol. 206(C), pages 645-657.
    7. Guo, Sheng & Yang, Tao & Hua, Haochen & Cao, Junwei, 2021. "Coupling fault diagnosis of wind turbine gearbox based on multitask parallel convolutional neural networks with overall information," Renewable Energy, Elsevier, vol. 178(C), pages 639-650.
    8. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    9. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    10. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    11. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Wang, Yili & Tao, Jianquan, 2022. "Operational state assessment of wind turbine gearbox based on long short-term memory networks and fuzzy synthesis," Renewable Energy, Elsevier, vol. 181(C), pages 1167-1176.
    12. Shujie Yang & Peikun Yang & Hao Yu & Jing Bai & Wuwei Feng & Yuxiang Su & Yulin Si, 2022. "A 2DCNN-RF Model for Offshore Wind Turbine High-Speed Bearing-Fault Diagnosis under Noisy Environment," Energies, MDPI, vol. 15(9), pages 1-16, May.
    13. Wu, Zhe & Zhang, Qiang & Cheng, Lifeng & Hou, Shuyong & Tan, Shengyue, 2020. "The VMTES: Application to the structural health monitoring and diagnosis of rotating machines," Renewable Energy, Elsevier, vol. 162(C), pages 2380-2396.
    14. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    15. Yanfeng He & Zhijie Guo & Xiang Wang & Waheed Abdul, 2023. "A Hybrid Approach of the Deep Learning Method and Rule-Based Method for Fault Diagnosis of Sucker Rod Pumping Wells," Energies, MDPI, vol. 16(7), pages 1-19, March.
    16. Wei Teng & Xiaolong Zhang & Yibing Liu & Andrew Kusiak & Zhiyong Ma, 2016. "Prognosis of the Remaining Useful Life of Bearings in a Wind Turbine Gearbox," Energies, MDPI, vol. 10(1), pages 1-16, December.
    17. Chang, Yuanhong & Chen, Jinglong & Qu, Cheng & Pan, Tongyang, 2020. "Intelligent fault diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels," Renewable Energy, Elsevier, vol. 153(C), pages 205-213.
    18. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    19. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    20. Paweł Knes & Phong B. Dao, 2024. "Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach," Energies, MDPI, vol. 17(20), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1760-:d:1063979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.