IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2409-d242255.html
   My bibliography  Save this article

Assessing the Impacts of Electric Vehicle Recharging Infrastructure Deployment Efforts in the European Union

Author

Listed:
  • Christian Thiel

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Andreea Julea

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Beatriz Acosta Iborra

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Nerea De Miguel Echevarria

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Emanuela Peduzzi

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Enrico Pisoni

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Jonatan J. Gómez Vilchez

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Jette Krause

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

Abstract

Electric vehicles (EVs) can play an important role in improving the European Union’s (EU)’s energy supply security, reducing the environmental impact of transport, and increasing EU competitiveness. The EU aims at fostering the synchronised deployment of EVs and necessary recharging infrastructure. There is currently a lack of studies in the literature for analysing the societal impacts of EV and infrastructure deployment at continental scale. In our paper, we analyse the likely impact of related plans of the EU member states (MSs). With the help of qualitative and quantitative analyses, we study the impact of plans on recharging infrastructure deployment, contributions to the EU climate and energy goals, air quality objectives, and reinforcement of the EU’s competitiveness and job creation. We soft-link a fleet impact model with a simplified source receptor relationship model, and propose a new model to calculate job impacts. The results overall show modest impacts by 2020, as most member states’ plans are not very ambitious. According to our analysis of the plans, a reduction of CO 2 emissions by 0.4%, NO x emissions by 0.37%, and PM 2.5 emissions by 0.44%, as well as a gross job creation of more than 8000 jobs will be achieved by 2020. The member state plans are very divergent. For countries with more ambitious targets up to 2020, such as Austria, France, Germany, and Luxemburg, the climate, energy, and air quality impacts are significant and show what would be achievable if the EU would increase its pace of EV and infrastructure deployment. We conclude that more ambitious efforts by the member states’ to deploy electric vehicles could accelerate the reduction of CO 2 emissions and lead to less dependence on fossil oil-based fuels, along with air quality improvements, while at the same time creating new job opportunities in Europe. In regards to the ratio of publicly accessible recharging points (RPs) per EV, we conclude that member states have to come up with more ambitious targets for recharging point deployment, as the current plans will lead to only one recharging point per every 20 EVs by 2020 across the EU. This paper can serve as useful input to the further the planning of EV and recharging infrastructure deployment in the EU and elsewhere. Our study highlights that the different strategies that are followed in the EU member states can be a fertile ground to identify best practices. It remains a challenge to quantify how different support policies impact EV deployment. In terms of further research needs, we identify that more detailed studies are required to determine an appropriate level of infrastructure deployment, including fast chargers.

Suggested Citation

  • Christian Thiel & Andreea Julea & Beatriz Acosta Iborra & Nerea De Miguel Echevarria & Emanuela Peduzzi & Enrico Pisoni & Jonatan J. Gómez Vilchez & Jette Krause, 2019. "Assessing the Impacts of Electric Vehicle Recharging Infrastructure Deployment Efforts in the European Union," Energies, MDPI, vol. 12(12), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2409-:d:242255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Lucas & Giuseppe Prettico & Marco Giacomo Flammini & Evangelos Kotsakis & Gianluca Fulli & Marcelo Masera, 2018. "Indicator-Based Methodology for Assessing EV Charging Infrastructure Using Exploratory Data Analysis," Energies, MDPI, vol. 11(7), pages 1-18, July.
    2. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Thiel, Christian, 2015. "Employment effects of renewable electricity deployment. A novel methodology," Energy, Elsevier, vol. 91(C), pages 940-951.
    3. von Rosenstiel, Dirk Peters & Heuermann, Daniel F. & Hüsig, Stefan, 2015. "Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles," Energy Policy, Elsevier, vol. 78(C), pages 91-101.
    4. Qing Kong & Michael Fowler & Evgueniy Entchev & Hajo Ribberink & Robert McCallum, 2018. "The Role of Charging Infrastructure in Electric Vehicle Implementation within Smart Grids," Energies, MDPI, vol. 11(12), pages 1-20, December.
    5. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
    6. Bruno Canizes & João Soares & Zita Vale & Juan M. Corchado, 2019. "Optimal Distribution Grid Operation Using DLMP-Based Pricing for Electric Vehicle Charging Infrastructure in a Smart City," Energies, MDPI, vol. 12(4), pages 1-40, February.
    7. Thiel, Christian & Nijs, Wouter & Simoes, Sofia & Schmidt, Johannes & van Zyl, Arnold & Schmid, Erwin, 2016. "The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation," Energy Policy, Elsevier, vol. 96(C), pages 153-166.
    8. Garcia, Rita & Freire, Fausto, 2017. "A review of fleet-based life-cycle approaches focusing on energy and environmental impacts of vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 935-945.
    9. Francisco J. Ruiz-Rodríguez & Jesús C. Hernández & Francisco Jurado, 2017. "Probabilistic Load-Flow Analysis of Biomass-Fuelled Gas Engines with Electrical Vehicles in Distribution Systems," Energies, MDPI, vol. 10(10), pages 1-23, October.
    10. Harrison, Gillian & Thiel, Christian, 2017. "An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 165-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Thiel & Anastasios Tsakalidis & Arnulf Jäger-Waldau, 2020. "Will Electric Vehicles Be Killed (again) or Are They the Next Mobility Killer App?," Energies, MDPI, vol. 13(7), pages 1-10, April.
    2. Zhang, Mingye & Yang, Min & Gao, Yangfan, 2024. "Tripartite evolutionary game and simulation analysis of electric bus charging facility sharing under the governmental reward and punishment mechanism," Energy, Elsevier, vol. 307(C).
    3. Anastasios Tsakalidis & Andreea Julea & Christian Thiel, 2019. "The Role of Infrastructure for Electric Passenger Car Uptake in Europe," Energies, MDPI, vol. 12(22), pages 1-18, November.
    4. Afaq Ahmad & Muhammad Khalid & Zahid Ullah & Naveed Ahmad & Mohammad Aljaidi & Faheem Ahmed Malik & Umar Manzoor, 2022. "Electric Vehicle Charging Modes, Technologies and Applications of Smart Charging," Energies, MDPI, vol. 15(24), pages 1-32, December.
    5. Maksymilian Mądziel & Tiziana Campisi, 2023. "Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database," Energies, MDPI, vol. 16(3), pages 1-18, February.
    6. Cristina Sousa & Evaldo Costa, 2022. "Types of Policies for the Joint Diffusion of Electric Vehicles with Renewable Energies and Their Use Worldwide," Energies, MDPI, vol. 15(20), pages 1-19, October.
    7. Rachana Vidhi & Prasanna Shrivastava & Abhishek Parikh, 2021. "Social and Technological Impact of Businesses Surrounding Electric Vehicles," Clean Technol., MDPI, vol. 3(1), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasios Tsakalidis & Andreea Julea & Christian Thiel, 2019. "The Role of Infrastructure for Electric Passenger Car Uptake in Europe," Energies, MDPI, vol. 12(22), pages 1-18, November.
    2. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Paulo M. De Oliveira-De Jesus & Mario A. Rios & Gustavo A. Ramos, 2018. "Energy Loss Allocation in Smart Distribution Systems with Electric Vehicle Integration," Energies, MDPI, vol. 11(8), pages 1-19, July.
    4. Yi, Tao & Cheng, Xiaobin & Chen, Yaxuan & Liu, Jinpeng, 2020. "Joint optimization of charging station and energy storage economic capacity based on the effect of alternative energy storage of electric vehicle," Energy, Elsevier, vol. 208(C).
    5. Smarajit Ghosh & Vinod Karar, 2018. "Assimilation of Optimal Sized Hybrid Photovoltaic-Biomass System by Dragonfly Algorithm with Grid," Energies, MDPI, vol. 11(7), pages 1-19, July.
    6. Ali M. Hakami & Kazi N. Hasan & Mohammed Alzubaidi & Manoj Datta, 2022. "A Review of Uncertainty Modelling Techniques for Probabilistic Stability Analysis of Renewable-Rich Power Systems," Energies, MDPI, vol. 16(1), pages 1-26, December.
    7. Deuten, Sebastiaan & Gómez Vilchez, Jonatan J. & Thiel, Christian, 2020. "Analysis and testing of electric car incentive scenarios in the Netherlands and Norway," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    8. Ziqiang Zhou & Fei Tang & Dichen Liu & Chenxu Wang & Xin Gao, 2020. "Probabilistic Assessment of Distribution Network with High Penetration of Distributed Generators," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    9. Kegang Zhao & Jinghao Bei & Yanwei Liu & Zhihao Liang, 2019. "Development of Global Optimization Algorithm for Series-Parallel PHEV Energy Management Strategy Based on Radau Pseudospectral Knotting Method," Energies, MDPI, vol. 12(17), pages 1-23, August.
    10. Jin-Xin Ou-Yang & Xiao-Xuan Long & Xue Du & Yan-Bo Diao & Meng-Yang Li, 2019. "Voltage Control Method for Active Distribution Networks Based on Regional Power Coordination," Energies, MDPI, vol. 12(22), pages 1-23, November.
    11. Yongchun Yang & Xiaodan Wang & Jingjing Luo & Jie Duan & Yajing Gao & Hong Li & Xiangning Xiao, 2017. "Multi-Objective Coordinated Planning of Distributed Generation and AC/DC Hybrid Distribution Networks Based on a Multi-Scenario Technique Considering Timing Characteristics," Energies, MDPI, vol. 10(12), pages 1-29, December.
    12. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    13. Grant Allan & Kevin Connolly & Peter McGregor & Andrew G Ross, 2019. "Economic activity supported by offshore wind: a hypothetical extraction study," Working Papers 1911, University of Strathclyde Business School, Department of Economics.
    14. Konstantinos Koasidis & Anastasios Karamaneas & Alexandros Nikas & Hera Neofytou & Erlend A. T. Hermansen & Kathleen Vaillancourt & Haris Doukas, 2020. "Many Miles to Paris: A Sectoral Innovation System Analysis of the Transport Sector in Norway and Canada in Light of the Paris Agreement," Sustainability, MDPI, vol. 12(14), pages 1-37, July.
    15. Lee, Shin, 2018. "Transport policies, induced traffic and their influence on vehicle emissions in developed and developing countries," Energy Policy, Elsevier, vol. 121(C), pages 264-274.
    16. Goulding, D. & Fitzpatrick, D. & O'Connor, R. & Browne, J.D. & Power, N.M., 2019. "Introducing gaseous transport fuel to Ireland: A strategic infrastructure framework," Renewable Energy, Elsevier, vol. 136(C), pages 548-557.
    17. Costantini, Valeria & Crespi, Francesco & Paglialunga, Elena, 2018. "The employment impact of private and public actions for energy efficiency: Evidence from European industries," Energy Policy, Elsevier, vol. 119(C), pages 250-267.
    18. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    19. Ogden, Joan & Jaffe, Amy Myers & Scheitrum, Daniel & McDonald, Zane & Miller, Marshall, 2018. "Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature," Energy Policy, Elsevier, vol. 115(C), pages 317-329.
    20. Korberg, Andrei David & Skov, Iva Ridjan & Mathiesen, Brian Vad, 2020. "The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark," Energy, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2409-:d:242255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.