IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p679-d1027323.html
   My bibliography  Save this article

Effect of Alkaline Pretreatment on the Fuel Properties of Torrefied Biomass from Rice Husk

Author

Listed:
  • Chi-Hung Tsai

    (Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan)

  • Yun-Hwei Shen

    (Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan)

  • Wen-Tien Tsai

    (Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan)

Abstract

Lignocellulosic biomass from rice husk (RH) is a renewable resource for fuel production, but it could pose ash-related challenges. This work focused on investigating the effects of pretreatment at different sodium hydroxide (NaOH) concentrations (i.e., 0.0, 0.25, 0.50, 0.75 and 1.00 M) on the calorific values and ash contents of treated RH products, and also finding the optimal torrefaction conditions. The results showed that alkaline pretreatment by sodium hydroxide (NaOH) reduced the ash content in the RH samples by over 85 wt%. Due to its relatively excellent calorific values and low ash content, the RH sample with 0.25 M NaOH pretreatment (i.e., RH-25) was chosen as a starting feedstock in the subsequent torrefaction experiments as a function of 240–360 °C for holding time of 0–90 min. In addition, the surface properties by scanning electron microscopy—energy dispersive X-ray spectroscopy (SEM-EDS) and Fourier-transform infrared spectroscopy (FTIR) were also used to observe the elemental compositions preliminarily. Based on the fuel properties of the torrefied RH products, the optimal torrefaction conditions can be found at around 280 °C for holding 30 min. As compared to the calorific value of the RH-25 (i.e., 18.74 MJ/kg) and its mass yield (i.e., 0.588), the calorific value, enhancement factor and energy yield of the optimal product were 28.97 MJ/kg, 1.55 and 0.91, respectively. Although the resulting product has a high calorific value like coal, it could have slight potential for slagging and fouling tendency and particulate matter emissions due to the relatively high contents of silicon (Si) and sodium (Na), based on the results of EDS and FTIR.

Suggested Citation

  • Chi-Hung Tsai & Yun-Hwei Shen & Wen-Tien Tsai, 2023. "Effect of Alkaline Pretreatment on the Fuel Properties of Torrefied Biomass from Rice Husk," Energies, MDPI, vol. 16(2), pages 1-10, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:679-:d:1027323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/679/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/679/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bazargan, Alireza & Bazargan, Majid & McKay, Gordon, 2015. "Optimization of rice husk pretreatment for energy production," Renewable Energy, Elsevier, vol. 77(C), pages 512-520.
    2. Izabella Maj & Sylwester Kalisz & Szymon Ciukaj, 2022. "Properties of Animal-Origin Ash—A Valuable Material for Circular Economy," Energies, MDPI, vol. 15(4), pages 1-15, February.
    3. Tsai, Wen-Tien & Lin, Yu-Quan & Tsai, Chi-Hung & Chung, Mei-Hua & Chu, Ming-Hung & Huang, Hung-Ju & Jao, Ya-Hsuan & Yeh, Showin-Ing, 2020. "Conversion of water caltrop husk into torrefied biomass by torrefaction," Energy, Elsevier, vol. 195(C).
    4. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Steven, Soen & Restiawaty, Elvi & Bindar, Yazid, 2021. "Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Zhao, Zhong & Feng, Shuo & Zhao, Yaying & Wang, Zhuozhi & Ma, Jiao & Xu, Lianfei & Yang, Jiancheng & Shen, Boxiong, 2022. "Investigation on the fuel quality and hydrophobicity of upgraded rice husk derived from various inert and oxidative torrefaction conditions," Renewable Energy, Elsevier, vol. 189(C), pages 1234-1248.
    7. Sivabalan Kaniapan & Jagadeesh Pasupuleti & Kartikeyan Patma Nesan & Haris Nalakath Abubackar & Hadiza Aminu Umar & Temidayo Lekan Oladosu & Segun R. Bello & Eldon R. Rene, 2022. "A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabella Maj & Krzysztof Matus, 2023. "Aluminosilicate Clay Minerals: Kaolin, Bentonite, and Halloysite as Fuel Additives for Thermal Conversion of Biomass and Waste," Energies, MDPI, vol. 16(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    2. Magotra, Verjesh Kumar & Lee, S.J. & Inamdar, Akbar I. & Kang, T.W. & Walke, Pundalik D. & Hogan, Stephanie C. & Kim, D.Y. & Saratale, Ganesh D. & Saratale, Rijuta G. & Purkayastha, Anwesha & Jeon, H., 2021. "Development of white brick fuel cell using rice husk ash agricultural waste for sustainable power generation: A novel approach," Renewable Energy, Elsevier, vol. 179(C), pages 1875-1883.
    3. Wang, Chu & Yuan, Xinhua & Li, Shanshan & Zhu, Xifeng, 2021. "Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation," Renewable Energy, Elsevier, vol. 169(C), pages 1317-1329.
    4. Yajing He & Shihong Zhang & Dongjing Liu & Xing Xie & Bin Li, 2023. "Effect of Biomass Particle Size on the Torrefaction Characteristics in a Fixed-Bed Reactor," Energies, MDPI, vol. 16(3), pages 1-14, January.
    5. Yan, Beibei & Li, Songjiang & Cao, Xingsijin & Zhu, Xiaochao & Li, Jian & Zhou, Shengquan & Zhao, Juan & Sun, Yunan & Chen, Guanyi, 2023. "Flue gas torrefaction integrated with gasification based on the circulation of Mg-additive," Applied Energy, Elsevier, vol. 333(C).
    6. Ndindeng, Sali Atanga & Wopereis, Marco & Sanyang, Sidi & Futakuchi, Koichi, 2019. "Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa," Renewable Energy, Elsevier, vol. 139(C), pages 924-935.
    7. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    8. Wen-Tien Tsai & Tasi-Jung Jiang & Yu-Quan Lin & Xiang Zhang & Kung-Sheng Yeh & Chi-Hung Tsai, 2021. "Fuel Properties of Torrefied Biomass from Sapindus Pericarp Extraction Residue under a Wide Range of Pyrolysis Conditions," Energies, MDPI, vol. 14(21), pages 1-10, November.
    9. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Hasan, Mohammad Maruf & Du, Fang, 2023. "The role of foreign trade and technology innovation on economic recovery in China: The mediating role of natural resources development," Resources Policy, Elsevier, vol. 80(C).
    11. Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.
    12. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Monteiro, Eliseu & Ramos, Ana & Rouboa, Abel, 2024. "Fundamental designs of gasification plants for combined heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    14. Singh, Rishikesh Kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2020. "Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM)," Energy, Elsevier, vol. 198(C).
    15. Kulbeik, Tim & Scherzinger, Marvin & Höfer, Isabel & Kaltschmitt, Martin, 2021. "Autoclave pre-treatment of foliage – Effects of temperature, residence time and water content on solid biofuel properties," Renewable Energy, Elsevier, vol. 171(C), pages 275-286.
    16. Niu, Qi & Ronsse, Frederik & Qi, Zhiyong & Zhang, Dongdong, 2022. "Fast torrefaction of large biomass particles by superheated steam: Enhanced solid products for multipurpose production," Renewable Energy, Elsevier, vol. 185(C), pages 552-563.
    17. Sykorova, Veronika & Jezerska, Lucie & Sassmanova, Veronika & Honus, Stanislav & Peikertova, Pavlina & Kielar, Jan & Zidek, Martin, 2024. "Biomass pellets with organic binders - before and after torrefaction," Renewable Energy, Elsevier, vol. 221(C).
    18. Jagadale, Manisha & Gangil, Sandip & Jadhav, Mahesh, 2023. "Enhancing fuel characteristics of jute sticks (Corchorus Sp.) using fixed bed torrefaction process," Renewable Energy, Elsevier, vol. 215(C).
    19. Lin, Yi-Li & Zheng, Nai-Yun & Lin, Ching-Shi, 2021. "Repurposing Washingtonia filifera petiole and Sterculia foetida follicle waste biomass for renewable energy through torrefaction," Energy, Elsevier, vol. 223(C).
    20. Chen, Ying-Chu & Jhou, Sih-Yu, 2020. "Integrating spent coffee grounds and silver skin as biofuels using torrefaction," Renewable Energy, Elsevier, vol. 148(C), pages 275-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:679-:d:1027323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.