IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp275-283.html
   My bibliography  Save this article

Integrating spent coffee grounds and silver skin as biofuels using torrefaction

Author

Listed:
  • Chen, Ying-Chu
  • Jhou, Sih-Yu

Abstract

This study used the torrefaction method to innovatively integrate spent coffee grounds (SCG) and silver skin into biofuels. The biofuels were dried, pelletized, and torrefied at 300 °C for 3 h. The mass yields and energy yields of the biofuels ranged from 41% to 43% and from 52% to 58%, respectively. The high heat value (HHV) range of the biofuels (24.23–27.28 MJ/kg) was higher than that reported in previous studies. The results revealed that an increase in the percentage of silver skin increased the hygroscopicity of the biofuels, which was unfavorable for storage. On average, the weight increased by 0.24–0.57 wt% with a 10 wt% increase of silver skin in the biofuels. The biofuels had zero sulfur and chlorine content and thus would be cleaner energy sources than coal. The elemental compositions of the biofuels were similar to that of lignite with 0.063–0.070 H/C and 0.34–0.44 O/C ratios. The sample most similar to coal, based on heating value, element content, proximate analysis results, and combustion characteristics, exhibited 62% similarity. Integrating silver skin with other materials may be unsuitable for biofuels, but it is helpful for reducing the environmental burden of landfilling or incineration.

Suggested Citation

  • Chen, Ying-Chu & Jhou, Sih-Yu, 2020. "Integrating spent coffee grounds and silver skin as biofuels using torrefaction," Renewable Energy, Elsevier, vol. 148(C), pages 275-283.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:275-283
    DOI: 10.1016/j.renene.2019.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119318750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
    2. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Kang, Sae Byul & Oh, Hong Young & Kim, Jong Jin & Choi, Kyu Sung, 2017. "Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW)," Renewable Energy, Elsevier, vol. 113(C), pages 1208-1214.
    4. Christoforou, Elias A. & Fokaides, Paris A., 2016. "Life cycle assessment (LCA) of olive husk torrefaction," Renewable Energy, Elsevier, vol. 90(C), pages 257-266.
    5. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
    6. Li, Hui & Liu, Xinhua & Legros, Robert & Bi, Xiaotao T. & Jim Lim, C. & Sokhansanj, Shahab, 2012. "Pelletization of torrefied sawdust and properties of torrefied pellets," Applied Energy, Elsevier, vol. 93(C), pages 680-685.
    7. Chen, Wei-Hsin & Lu, Ke-Miao & Tsai, Chi-Ming, 2012. "An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction," Applied Energy, Elsevier, vol. 100(C), pages 318-325.
    8. Chiang, Kung-Yuh & Chien, Kuang-Li & Lu, Cheng-Han, 2012. "Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy," Applied Energy, Elsevier, vol. 100(C), pages 164-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiguo Dong & Zhiwen Chen & Jiacong Chen & Zhao Jia Ting & Rui Zhang & Guozhao Ji & Ming Zhao, 2022. "A Novel Method for the Estimation of Higher Heating Value of Municipal Solid Wastes," Energies, MDPI, vol. 15(7), pages 1-14, April.
    2. Mendoza Martinez, Clara Lisseth & Saari, Jussi & Melo, Yara & Cardoso, Marcelo & de Almeida, Gustavo Matheus & Vakkilainen, Esa, 2021. "Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: A Brazilian case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Bartolucci, L. & Cordiner, S. & Di Carlo, A. & Gallifuoco, A. & Mele, P. & Mulone, V., 2024. "Platform chemicals recovery from spent coffee grounds aqueous-phase pyrolysis oil," Renewable Energy, Elsevier, vol. 220(C).
    4. Kim, Seok Jun & Park, Sunyong & Oh, Kwang Cheol & Ju, Young Min & Cho, La hoon & Kim, Dae Hyun, 2021. "Development of surface torrefaction process to utilize agro-byproducts as an energy source," Energy, Elsevier, vol. 233(C).
    5. Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Máximo Domínguez-Garabitos & Jose Atilio de Frias, 2023. "Biomass Energy Potential of Agricultural Residues in the Dominican Republic," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    7. Kacper Świechowski & Martyna Hnat & Paweł Stępień & Sylwia Stegenta-Dąbrowska & Szymon Kugler & Jacek A. Koziel & Andrzej Białowiec, 2020. "Waste to Energy: Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance," Energies, MDPI, vol. 13(12), pages 1-37, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    2. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
    4. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    5. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    6. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    7. Zhang, Congyu & Chen, Wei-Hsin & Ho, Shih-Hsin, 2022. "Elemental loss, enrichment, transformation and life cycle assessment of torrefied corncob," Energy, Elsevier, vol. 242(C).
    8. Maja Ivanovski & Aleksandra Petrovič & Darko Goričanec & Danijela Urbancl & Marjana Simonič, 2023. "Exploring the Properties of the Torrefaction Process and Its Prospective in Treating Lignocellulosic Material," Energies, MDPI, vol. 16(18), pages 1-20, September.
    9. Volpe, Roberto & Messineo, Antonio & Millan, Marcos & Volpe, Maurizio & Kandiyoti, Rafael, 2015. "Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown," Energy, Elsevier, vol. 82(C), pages 119-127.
    10. Peng Liu & Panpan Lang & Ailing Lu & Yanling Li & Xueqin Li & Tanglei Sun & Yantao Yang & Hui Li & Tingzhou Lei, 2022. "Effect of Evolution of Carbon Structure during Torrefaction in Woody Biomass on Thermal Degradation," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    11. Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
    12. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    13. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    14. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    15. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    16. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Anthony Ike Anukam & Jonas Berghel & Stefan Frodeson & Elizabeth Bosede Famewo & Pardon Nyamukamba, 2019. "Characterization of Pure and Blended Pellets Made from Norway Spruce and Pea Starch: A Comparative Study of Bonding Mechanism Relevant to Quality," Energies, MDPI, vol. 12(23), pages 1-22, November.
    18. Niu, Qi & Ronsse, Frederik & Qi, Zhiyong & Zhang, Dongdong, 2022. "Fast torrefaction of large biomass particles by superheated steam: Enhanced solid products for multipurpose production," Renewable Energy, Elsevier, vol. 185(C), pages 552-563.
    19. Rudolfsson, Magnus & Stelte, Wolfgang & Lestander, Torbjörn A., 2015. "Process optimization of combined biomass torrefaction and pelletization for fuel pellet production – A parametric study," Applied Energy, Elsevier, vol. 140(C), pages 378-384.
    20. Yang, Yang & Sun, Mingman & Zhang, Meng & Zhang, Ke & Wang, Donghai & Lei, Catherine, 2019. "A fundamental research on synchronized torrefaction and pelleting of biomass," Renewable Energy, Elsevier, vol. 142(C), pages 668-676.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:275-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.