IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1104-d1040953.html
   My bibliography  Save this article

Effect of Biomass Particle Size on the Torrefaction Characteristics in a Fixed-Bed Reactor

Author

Listed:
  • Yajing He

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Shihong Zhang

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Dongjing Liu

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Xing Xie

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Bin Li

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

The aim of this study is to investigate the influence of biomass particle size on the torrefaction characteristics under different torrefaction temperatures and times. Paulownia wood with particle sizes ranging from 12 to <0.3 mm was selected. It was torrefied at 260 and 290 °C in a fixed-bed reactor for 30–90 min. The results showed that biomass particle size did affect the product’s evolution during biomass torrefaction. With the decrease in particle size from 12 to <0.3 mm, the yield of the solid product decreased by 5.41 and 3.54 wt.%, the yield of the liquid product increased by 5.87 and 3.25 wt.%, and the yield of the gas product changed insignificantly, at 260 and 290 °C, respectively. Comparatively, torrefaction temperature had a more significant effect on the composition of gas products than particle size and torrefaction time. At lower temperatures, decarboxylation reactions dominated in the torrefaction process with more CO 2 produced. However, at higher temperatures, decarbonylation reactions were significantly strengthened with more CO generated. The contents of CO 2 and CO could account for more than 98 vol% of the product gas. The influence of particle size on the chemical composition of the solid product was much smaller than that of torrefaction temperature and time, but the energy yield of the solid product decreased with the decrease in particle size. The increase in torrefaction temperature and time could significantly increase the C content in the solid product while reducing its O content. It is recommended to use a relatively higher temperature (e.g., 290 °C) for the torrefaction of large particle biomass, as it could significantly reduce the impact of particle size on the torrefaction process and reduce the torrefaction time.

Suggested Citation

  • Yajing He & Shihong Zhang & Dongjing Liu & Xing Xie & Bin Li, 2023. "Effect of Biomass Particle Size on the Torrefaction Characteristics in a Fixed-Bed Reactor," Energies, MDPI, vol. 16(3), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1104-:d:1040953
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arkadiusz Dyjakon & Tomasz Noszczyk & Łukasz Sobol & Dominika Misiakiewicz, 2021. "Influence of Torrefaction Temperature and Climatic Chamber Operation Time on Hydrophobic Properties of Agri-Food Biomass Investigated Using the EMC Method," Energies, MDPI, vol. 14(17), pages 1-19, August.
    2. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Anna Sobczak & Ewa Chomać-Pierzecka & Andrzej Kokiel & Monika Różycka & Jacek Stasiak & Dariusz Soboń, 2022. "Economic Conditions of Using Biodegradable Waste for Biogas Production, Using the Example of Poland and Germany," Energies, MDPI, vol. 15(14), pages 1-18, July.
    4. Niu, Qi & Ronsse, Frederik & Qi, Zhiyong & Zhang, Dongdong, 2022. "Fast torrefaction of large biomass particles by superheated steam: Enhanced solid products for multipurpose production," Renewable Energy, Elsevier, vol. 185(C), pages 552-563.
    5. Magoua Mbeugang, Christian Fabrice & Li, Bin & Lin, Dan & Xie, Xing & Wang, Shuaijun & Wang, Shuang & Zhang, Shu & Huang, Yong & Liu, Dongjing & Wang, Qian, 2021. "Hydrogen rich syngas production from sorption enhanced gasification of cellulose in the presence of calcium oxide," Energy, Elsevier, vol. 228(C).
    6. Li, Bin & Zhao, Lijun & Xie, Xing & Lin, Dan & Xu, Huibin & Wang, Shuang & Xu, Zhixiang & Wang, Junfeng & Huang, Yong & Zhang, Shu & Hu, Xun & Liu, Dongjing, 2021. "Volatile-char interactions during biomass pyrolysis: Effect of char preparation temperature," Energy, Elsevier, vol. 215(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bin & Song, Mengge & Xie, Xing & Wei, Juntao & Xu, Deliang & Ding, Kuan & Huang, Yong & Zhang, Shu & Hu, Xun & Zhang, Shihong & Liu, Dongjing, 2023. "Oxidative fast pyrolysis of biomass in a quartz tube fluidized bed reactor: Effect of oxygen equivalence ratio," Energy, Elsevier, vol. 270(C).
    2. Zhao, Zhong & Feng, Shuo & Zhao, Yaying & Wang, Zhuozhi & Ma, Jiao & Xu, Lianfei & Yang, Jiancheng & Shen, Boxiong, 2022. "Investigation on the fuel quality and hydrophobicity of upgraded rice husk derived from various inert and oxidative torrefaction conditions," Renewable Energy, Elsevier, vol. 189(C), pages 1234-1248.
    3. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    4. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).
    5. Wang, Chu & Yuan, Xinhua & Li, Shanshan & Zhu, Xifeng, 2021. "Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation," Renewable Energy, Elsevier, vol. 169(C), pages 1317-1329.
    6. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    7. Jiao, Zixin & Qiu, Penghua & Chen, Xiye & Liu, Li & Zhang, Linyao & Xing, Chang, 2023. "Effects of volatiles and active AAEMs interaction with char on char characteristics during co-pyrolysis," Renewable Energy, Elsevier, vol. 208(C), pages 618-626.
    8. Magoua Mbeugang, Christian Fabrice & Li, Bin & Lin, Dan & Xie, Xing & Wang, Shuaijun & Wang, Shuang & Zhang, Shu & Huang, Yong & Liu, Dongjing & Wang, Qian, 2021. "Hydrogen rich syngas production from sorption enhanced gasification of cellulose in the presence of calcium oxide," Energy, Elsevier, vol. 228(C).
    9. Yan, Beibei & Li, Songjiang & Cao, Xingsijin & Zhu, Xiaochao & Li, Jian & Zhou, Shengquan & Zhao, Juan & Sun, Yunan & Chen, Guanyi, 2023. "Flue gas torrefaction integrated with gasification based on the circulation of Mg-additive," Applied Energy, Elsevier, vol. 333(C).
    10. Song, Yintao & Chen, Zhuo & Li, Yanling & Sun, Tanglei & Huhetaoli, & Lei, Tingzhou & Liu, Peng, 2024. "Regulation of energy properties and thermal behavior of bio-coal from lignocellulosic biomass using torrefaction," Energy, Elsevier, vol. 289(C).
    11. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    12. Wen-Tien Tsai & Tasi-Jung Jiang & Yu-Quan Lin & Xiang Zhang & Kung-Sheng Yeh & Chi-Hung Tsai, 2021. "Fuel Properties of Torrefied Biomass from Sapindus Pericarp Extraction Residue under a Wide Range of Pyrolysis Conditions," Energies, MDPI, vol. 14(21), pages 1-10, November.
    13. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    15. Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.
    16. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Ewa Chomać-Pierzecka & Hubert Gąsiński & Joanna Rogozińska-Mitrut & Dariusz Soboń & Sebastian Zupok, 2023. "Review of Selected Aspects of Wind Energy Market Development in Poland and Lithuania in the Face of Current Challenges," Energies, MDPI, vol. 16(1), pages 1-17, January.
    18. Singh, Rishikesh Kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2020. "Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM)," Energy, Elsevier, vol. 198(C).
    19. Jakub Mazurkiewicz, 2023. "Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time," Energies, MDPI, vol. 16(18), pages 1-22, September.
    20. Xin Zhao & Yanqi Chen & Gang Xu & Heng Chen, 2022. "Economic Assessment of Operation Strategies on Park-Level Integrated Energy System Coupled with Biogas: A Case Study in a Sewage Treatment Plant," Energies, MDPI, vol. 16(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1104-:d:1040953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.