IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics1364032121006158.html
   My bibliography  Save this article

Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect

Author

Listed:
  • Steven, Soen
  • Restiawaty, Elvi
  • Bindar, Yazid

Abstract

The high energy and silica contents of rice husks make them attractive for use in renewable energy and green chemical strategies. This review comprehensively discussed the potential route of rice husk utilization to energy and bio-silica simultaneously which is still lacking to investigate. The ash content in the dry rice husk could be up to 25 wt% and the high silica content in the rice husk ash could reach 99.77 d b. wt%. About 1 tonne/h of rice husk combustion could produce about 600–700 kWh of averaged net electricity so that it can be employed to support a small and simple power plant. Apart from that, applying acid leaching as a pretreatment before rice husk ash extraction with NaOH could achieve bio-silica with 98% recovery, 99.7% purity, and 400.69 m2/g surface area. Rice husk combustion in a suspension combustor seems to be appropriate to maintain the low combustion temperature at 700 °C in order to prevent the crystalline silica formation in the rice husk ash. The combustion efficiency is very high with 0.8% of unburnt carbon content in the ash as well as CO and NOx emissions are below 250 ppm. This review reveals that the industrial-scale for energy and amorphous bio-silica production from rice husk through a suspension combustor with optimized operating parameters emerges as a future prospect. It can lead to sustainability and self-reliance on chemicals and energy sectors, of which there are many research and development challenges to overcome.

Suggested Citation

  • Steven, Soen & Restiawaty, Elvi & Bindar, Yazid, 2021. "Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006158
    DOI: 10.1016/j.rser.2021.111329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwofie, E.M. & Ngadi, M., 2016. "Sustainable energy supply for local rice parboiling in West Africa: The potential of rice husk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1409-1418.
    2. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    3. Alexandre Boriouchkine & Sirkka-Liisa Jämsä-Jounela, 2016. "Simplification of a Mechanistic Model of Biomass Combustion for On-Line Computations," Energies, MDPI, vol. 9(9), pages 1-25, September.
    4. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    5. Martínez, Juan Daniel & Pineda, Tatiana & López, Juan Pablo & Betancur, Mariluz, 2011. "Assessment of the rice husk lean-combustion in a bubbling fluidized bed for the production of amorphous silica-rich ash," Energy, Elsevier, vol. 36(6), pages 3846-3854.
    6. Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Sirisomboon, Kasama & Arromdee, Porametr & Chakritthakul, Songpol, 2010. "Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk," Applied Energy, Elsevier, vol. 87(9), pages 2899-2906, September.
    7. Kwofie, E.M. & Ngadi, M. & Sotocinal, S., 2017. "Thermodynamic evaluation of a rice husk fired integrated steam and hot air generation unit for rice parboiling," Energy, Elsevier, vol. 128(C), pages 39-49.
    8. Ali, Ghaffar & Bashir, Muhammad Khalid & Ali, Hassan & Bashir, Muhammad Hamid, 2016. "Utilization of rice husk and poultry wastes for renewable energy potential in Pakistan: An economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 25-29.
    9. Shen, Yafei, 2017. "Rice husk silica derived nanomaterials for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 453-466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. D. S. Piyathissa & P. D. Kahandage & Namgay & Hao Zhang & Ryozo Noguchi & Tofael Ahamed, 2023. "Introducing a Novel Rice Husk Combustion Technology for Maximizing Energy and Amorphous Silica Production Using a Prototype Hybrid Rice Husk Burner to Minimize Environmental Impacts and Health Risk," Energies, MDPI, vol. 16(3), pages 1-19, January.
    2. Reddy, Aparna & Begum, Sameena & Juntupally, Sudharshan & Anupoju, Gangagni Rao, 2024. "Assessing the impact of alkali pretreatment of rice husk on its composition and product portfolio: Tradeoff between biogas and valuable materials recovery for sustainability," Renewable Energy, Elsevier, vol. 226(C).
    3. Chi-Hung Tsai & Yun-Hwei Shen & Wen-Tien Tsai, 2023. "Effect of Alkaline Pretreatment on the Fuel Properties of Torrefied Biomass from Rice Husk," Energies, MDPI, vol. 16(2), pages 1-10, January.
    4. Yang, Wei & Zhu, Youjian & Li, Yu & Cheng, Wei & Zhang, Wennan & Yang, Haiping & Tan, Zhiwu & Chen, Hanping, 2022. "Mitigation of particulate matter emissions from co-combustion of rice husk with cotton stalk or cornstalk," Renewable Energy, Elsevier, vol. 190(C), pages 893-902.
    5. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magotra, Verjesh Kumar & Lee, S.J. & Inamdar, Akbar I. & Kang, T.W. & Walke, Pundalik D. & Hogan, Stephanie C. & Kim, D.Y. & Saratale, Ganesh D. & Saratale, Rijuta G. & Purkayastha, Anwesha & Jeon, H., 2021. "Development of white brick fuel cell using rice husk ash agricultural waste for sustainable power generation: A novel approach," Renewable Energy, Elsevier, vol. 179(C), pages 1875-1883.
    2. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Hossein Beidaghy Dizaji & Thomas Zeng & Volker Lenz & Dirk Enke, 2022. "Valorization of Residues from Energy Conversion of Biomass for Advanced and Sustainable Material Applications," Sustainability, MDPI, vol. 14(9), pages 1-5, April.
    4. Shaheen, Sabry M. & Antoniadis, Vasileios & Shahid, Muhammad & Yang, Yi & Abdelrahman, Hamada & Zhang, Tao & Hassan, Noha E.E. & Bibi, Irshad & Niazi, Nabeel Khan & Younis, Sherif A. & Almazroui, Mans, 2022. "Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Jinyoung Chun & Jin Hyung Lee, 2020. "Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    6. Kwofie, E.M. & Ngadi, M., 2017. "A review of rice parboiling systems, energy supply, and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 465-472.
    7. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    8. Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.
    9. Jenol, M.A. & Chu, P.H. & Ramle, I.K. & Joyce, L.J.W. & Lai-Yee, P. & Ibrahim, M.F. & Alitheen, N.B. & Osman, M.A. & Abd Gani, S. & Abd-Aziz, S., 2024. "Feasibility of agricultural biomass in Southeast Asia for enzymes production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    10. Yassine Charabi & Sabah Abdul-Wahab & Abdul Majeed Al-Mahruqi & Selma Osman & Isra Osman, 2022. "The potential estimation and cost analysis of wind energy production in Oman," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5917-5937, April.
    11. Hu, Ming-Che & Huang, An-Lei & Wen, Tzai-Hung, 2013. "GIS-based biomass resource utilization for rice straw cofiring in the Taiwanese power market," Energy, Elsevier, vol. 55(C), pages 354-360.
    12. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Wood pellets as a sustainable energy alternative in Portugal," Renewable Energy, Elsevier, vol. 85(C), pages 1011-1016.
    13. Kwofie, E.M. & Ngadi, M. & Sotocinal, S., 2017. "Energy efficiency and emission assessment of a continuous rice husk stove for rice parboiling," Energy, Elsevier, vol. 122(C), pages 340-349.
    14. Shibo Wu & Jiannan Chen & Daoping Peng & Zheng Wu & Qin Li & Tao Huang, 2019. "Effects of Water Leaching on the Ash Sintering Problems of Wheat Straw," Energies, MDPI, vol. 12(3), pages 1-14, January.
    15. Wang, Liang & Skreiberg, Øyvind & Becidan, Michael & Li, Hailong, 2016. "Investigation of rye straw ash sintering characteristics and the effect of additives," Applied Energy, Elsevier, vol. 162(C), pages 1195-1204.
    16. Tae Hoon Kim & Hyun Kwak & Tae Hyun Kim & Kyeong Keun Oh, 2020. "Extraction Behaviors of Lignin and Hemicellulose-Derived Sugars During Organosolv Fractionation of Agricultural Residues Using a Bench-Scale Ball Milling Reactor," Energies, MDPI, vol. 13(2), pages 1-15, January.
    17. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    18. Massoud Sofi & Ylias Sabri & Zhiyuan Zhou & Priyan Mendis, 2019. "Transforming Municipal Solid Waste into Construction Materials," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    19. Shen, Yafei, 2017. "Rice husk silica derived nanomaterials for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 453-466.
    20. Weronika Kruszelnicka, 2020. "A New Model for Environmental Assessment of the Comminution Process in the Chain of Biomass Energy Processing †," Energies, MDPI, vol. 13(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.