IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7839-d1290507.html
   My bibliography  Save this article

Advances in Computational Fluid Dynamics Modeling for Biomass Pyrolysis: A Review

Author

Listed:
  • Anirudh Kulkarni

    (Department of Mechanical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar 382426, India)

  • Garima Mishra

    (Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, India)

  • Sridhar Palla

    (Department of Chemical Engineering, Indian Institute of Petroleum and Energy, Visakhapatnam 530003, India)

  • Potnuri Ramesh

    (Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore 575025, India)

  • Dadi Venkata Surya

    (Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, India)

  • Tanmay Basak

    (Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India)

Abstract

Pyrolysis, a process for extracting valuable chemicals from waste materials, leverages computational fluid dynamics (CFD) to optimize reactor parameters, thereby enhancing product quality and process efficiency. This review aims to understand the application of CFD in pyrolysis. Initially, the need for pyrolysis and its role in biomass valorization are discussed, and this is followed by an elaboration of the fundamentals of CFD studies in terms of their application to the pyrolysis process. The various CFD simulations and models used to understand product formation are also explained. Pyrolysis is conducted using both conventional and microwave-assisted pyrolysis platforms. Hence, the reaction kinetics, governing model equations, and laws are discussed in the conventional pyrolysis section. In the microwave-assisted pyrolysis section, the importance of wavelength, penetration depth, and microwave conversion efficiencies on the CFD are discussed. This review provides valuable insights to academic researchers on the application of CFD in pyrolysis systems. The modeling of pyrolysis by computational fluid dynamics (CFD) is a complex process due to the implementation of multiple reaction kinetics and physics, high computational cost, and reactor design. These challenges in the modeling of the pyrolysis process are discussed in this paper. Significant solutions that have been used to overcome the challenges are also provided with potential areas of research and development in the future of CFD in pyrolysis.

Suggested Citation

  • Anirudh Kulkarni & Garima Mishra & Sridhar Palla & Potnuri Ramesh & Dadi Venkata Surya & Tanmay Basak, 2023. "Advances in Computational Fluid Dynamics Modeling for Biomass Pyrolysis: A Review," Energies, MDPI, vol. 16(23), pages 1-32, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7839-:d:1290507
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Hui & Cattolica, Robert J. & Seiser, Reinhard & Liao, Chang-hsien, 2015. "Three-dimensional full-loop simulation of a dual fluidized-bed biomass gasifier," Applied Energy, Elsevier, vol. 160(C), pages 489-501.
    2. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).
    3. Benjamin Ortner & Christian Schmidberger & Hannes Gerhardter & René Prieler & Hartmuth Schröttner & Christoph Hochenauer, 2023. "Computationally Inexpensive CFD Approach for the Combustion of Sewage Sludge Powder, Including the Consideration of Water Content and Limestone Additive Variations," Energies, MDPI, vol. 16(4), pages 1-25, February.
    4. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    5. Park, Hoon Chae & Choi, Hang Seok, 2019. "Fast pyrolysis of biomass in a spouted bed reactor: Hydrodynamics, heat transfer and chemical reaction," Renewable Energy, Elsevier, vol. 143(C), pages 1268-1284.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Weijie & Wang, Shuai & Zhang, Kai & He, Yurong, 2020. "Numerical investigation of in situ gasification chemical looping combustion of biomass in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 151(C), pages 216-225.
    2. Suellen Cristina Sousa Alcântara & José Ângelo Peixoto da Costa & Alvaro Antonio Villa Ochoa & Gustavo de Novaes Pires Leite & Álvaro Augusto Soares Lima & Héber Claudius Nunes Silva & Paula Suemy Arr, 2025. "Critical Review of Advances and Numerical Modeling in Absorbers and Desorbers of Absorption Chillers: CFD Applications, Constraints, and Future Prospects," Energies, MDPI, vol. 18(2), pages 1-30, January.
    3. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Yang, Shiliang & Dong, Ruihan & Du, Yanxiang & Wang, Shuai & Wang, Hua, 2021. "Numerical study of the biomass pyrolysis process in a spouted bed reactor through computational fluid dynamics," Energy, Elsevier, vol. 214(C).
    5. Ricardo Fabricio Escobar-Jiménez & Isaac Justine Canela-Sánchez & Manuel Adam-Medina & Abisai Acevedo-Quiroz & Armando Huicochea-Rodríguez & David Juárez-Romero, 2024. "Implementation of Adaptive Observer and Mathematical Model Validation of the Evaporator of an Absorption Heat Transformer," Mathematics, MDPI, vol. 12(23), pages 1-21, November.
    6. Sui, Zengguang & Zhai, Chong & Wu, Wei, 2022. "Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration," Renewable Energy, Elsevier, vol. 187(C), pages 109-122.
    7. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    8. Sang Kyu Choi & Yeon Seok Choi & Yeon Woo Jeong & So Young Han & Quynh Van Nguyen, 2020. "Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor," Energies, MDPI, vol. 13(24), pages 1-19, December.
    9. Stanger, Lukas & Bartik, Alexander & Hammerschmid, Martin & Jankovic, Stefan & Benedikt, Florian & Müller, Stefan & Schirrer, Alexander & Jakubek, Stefan & Kozek, Martin, 2024. "Model predictive control of a dual fluidized bed gasification plant," Applied Energy, Elsevier, vol. 361(C).
    10. Jiaao Zhu & Yun Guo & Na Chen & Baoming Chen, 2024. "A Review of the Efficient and Thermal Utilization of Biomass Waste," Sustainability, MDPI, vol. 16(21), pages 1-30, October.
    11. Sui, Zengguang & Wu, Wei, 2022. "A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems," Renewable Energy, Elsevier, vol. 201(P1), pages 563-593.
    12. Sun, Haoran & Yang, Shiliang & Bao, Guirong & Hu, Jianhang & Wang, Hua, 2023. "Numerical evaluation of multi-scale properties in biomass fast pyrolysis in fountain confined conical spouted bed," Energy, Elsevier, vol. 283(C).
    13. Kong, Dali & Wang, Shuai & Luo, Kun & Hu, Chenshu & Li, Debo & Fan, Jianren, 2020. "Three-dimensional simulation of biomass gasification in a full-loop pilot-scale dual fluidized bed with complex geometric structure," Renewable Energy, Elsevier, vol. 157(C), pages 466-481.
    14. José Estupiñán-Campos & William Quitiaquez & César Nieto-Londoño & Patricio Quitiaquez, 2024. "Numerical Simulation of the Heat Transfer Inside a Shell and Tube Heat Exchanger Considering Different Variations in the Geometric Parameters of the Design," Energies, MDPI, vol. 17(3), pages 1-17, January.
    15. Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).
    16. Yang, Shiliang & Wan, Zhanghao & Wang, Shuai & Wang, Hua, 2020. "Computational fluid study of radial and axial segregation characteristics in a dual fluidized bed reactor system," Energy, Elsevier, vol. 209(C).
    17. Luis Henríquez-Vargas & Pablo Donoso-García & Lawrence Lackey & Mauricio Bravo-Gutiérrez & Benjamín Cajas & Alejandro Reyes & Nicolás Pailahueque & Isaac Díaz-Aburto & Valeri Bubnovich, 2024. "Modeling of the Solid Stress Tensor in the MP-PIC Method: A Review of Methods and Applications," Mathematics, MDPI, vol. 12(23), pages 1-33, November.
    18. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.
    19. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    20. Kang, Panxing & Zhang, Guangyi & Ge, Zefeng & Zha, Zhenting & Zhang, Huiyan, 2022. "Three-dimensional modelling and optimization of an industrial dual fluidized bed biomass gasification decoupling combustion reactor," Applied Energy, Elsevier, vol. 311(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7839-:d:1290507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.