IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp109-122.html
   My bibliography  Save this article

Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration

Author

Listed:
  • Sui, Zengguang
  • Zhai, Chong
  • Wu, Wei

Abstract

Novel and simple enhancement structures are proposed to improve the absorption characteristics of flat membrane-based absorbers. Firstly, a parametric study is conducted to elucidate the effect of membrane parameters on the absorption process using a two-dimensional CFD model. Results indicate that the most critical membrane parameter affecting the absorption rate is the membrane porosity compared with the membrane thickness and pore diameter. The recommended membrane porosity, pore diameter, and thickness are 0.8, 1 μm, and 60 μm, respectively. Then, a comparative study on the proposed enhancement structures is carried out. Results demonstrate that inclined groove induces solution swirling while increasing the effective heat transfer areas, and thus the absorption performance is significantly improved at lower solution pressure drops. Flow visualization shows that two counter-rotating vortices are generated inside HG (herringbone groove) and SHG (staggered herringbone grove) structures, and the longitudinal swirling flows are induced inside IG (inclined groove) and SIG (staggered inclined groove) structures. Comparisons indicate that the HG structure improves the absorption rate by 1.62 times, reducing the solution pressure drop by 19.01%. These changes from the IG structure are 1.56 and 20.77%, respectively. Therefore, the IG and HG structures are recommended.

Suggested Citation

  • Sui, Zengguang & Zhai, Chong & Wu, Wei, 2022. "Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration," Renewable Energy, Elsevier, vol. 187(C), pages 109-122.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:109-122
    DOI: 10.1016/j.renene.2022.01.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122000623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nourafkan, E. & Asachi, M. & Jin, H. & Wen, D. & Ahmed, W., 2019. "Stability and photo-thermal conversion performance of binary nanofluids for solar absorption refrigeration systems," Renewable Energy, Elsevier, vol. 140(C), pages 264-273.
    2. Altun, A.F. & Kilic, M., 2020. "Economic feasibility analysis with the parametric dynamic simulation of a single effect solar absorption cooling system for various climatic regions in Turkey," Renewable Energy, Elsevier, vol. 152(C), pages 75-93.
    3. Venegas, M. & de Vega, M. & García-Hernando, N. & Ruiz-Rivas, U., 2016. "A simple model to predict the performance of a H2O–LiBr absorber operating with a microporous membrane," Energy, Elsevier, vol. 96(C), pages 383-393.
    4. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "An overview of ammonia-based absorption chillers and heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 681-707.
    5. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    6. Sehgal, Shitiz & Alvarado, Jorge L. & Hassan, Ibrahim G. & Kadam, Sambhaji T., 2021. "A comprehensive review of recent developments in falling-film, spray, bubble and microchannel absorbers for absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    7. Asfand, Faisal & Stiriba, Youssef & Bourouis, Mahmoud, 2015. "CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems," Energy, Elsevier, vol. 91(C), pages 517-530.
    8. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).
    9. Zhai, Chong & Wu, Wei & Coronas, Alberto, 2021. "Membrane-based absorption cooling and heating: Development and perspectives," Renewable Energy, Elsevier, vol. 177(C), pages 663-688.
    10. Bigham, Sajjad & Yu, Dazhi & Chugh, Devesh & Moghaddam, Saeed, 2014. "Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices," Energy, Elsevier, vol. 65(C), pages 621-630.
    11. Hamza K. Mukhtar & Saud Ghani, 2021. "Hybrid Ejector-Absorption Refrigeration Systems: A Review," Energies, MDPI, vol. 14(20), pages 1-31, October.
    12. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    13. Ali, Ahmed Hamza H., 2010. "Design of a compact absorber with a hydrophobic membrane contactor at the liquid-vapor interface for lithium bromide-water absorption chillers," Applied Energy, Elsevier, vol. 87(4), pages 1112-1121, April.
    14. Nasr Isfahani, Rasool & Bigham, Sajjad & Mortazavi, Mehdi & Wei, Xing & Moghaddam, Saeed, 2015. "Impact of micromixing on performance of a membrane-based absorber," Energy, Elsevier, vol. 90(P1), pages 997-1004.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sui, Zengguang & Wu, Wei, 2022. "A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems," Renewable Energy, Elsevier, vol. 201(P1), pages 563-593.
    2. Sui, Zengguang & Wu, Wei, 2023. "AI-assisted maldistribution minimization of membrane-based heat/mass exchangers for compact absorption cooling," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sui, Zengguang & Wu, Wei, 2022. "A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems," Renewable Energy, Elsevier, vol. 201(P1), pages 563-593.
    2. Sui, Zengguang & Sui, Yunren & Wu, Wei, 2022. "Multi-objective optimization of a microchannel membrane-based absorber with inclined grooves based on CFD and machine learning," Energy, Elsevier, vol. 240(C).
    3. Zhai, Chong & Wu, Wei & Coronas, Alberto, 2021. "Membrane-based absorption cooling and heating: Development and perspectives," Renewable Energy, Elsevier, vol. 177(C), pages 663-688.
    4. Venegas, M. & de Vega, M. & García-Hernando, N. & Ruiz-Rivas, U., 2017. "Adiabatic vs non-adiabatic membrane-based rectangular micro-absorbers for H2O-LiBr absorption chillers," Energy, Elsevier, vol. 134(C), pages 757-766.
    5. Sui, Zengguang & Wu, Wei, 2023. "AI-assisted maldistribution minimization of membrane-based heat/mass exchangers for compact absorption cooling," Energy, Elsevier, vol. 263(PC).
    6. Zhai, Chong & Wu, Wei, 2021. "Performance optimization and comparison towards compact and efficient absorption refrigeration system with conventional and emerging absorbers/desorbers," Energy, Elsevier, vol. 229(C).
    7. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    8. Zhai, Chong & Wu, Wei, 2022. "Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources," Energy, Elsevier, vol. 239(PB).
    9. Wu, Wei & Zhai, Chong & Sui, Zengguang & Sui, Yunren & Luo, Xianglong, 2021. "Proton exchange membrane fuel cell integrated with microchannel membrane-based absorption cooling for hydrogen vehicles," Renewable Energy, Elsevier, vol. 178(C), pages 560-573.
    10. Zhao, Chuang-Yao & Zheng, Chen-Min & Wang, Xiao-Song & Qi, Di & Jiang, Jun-Min & Ji, Wen-Tao & Jin, Pu-Hang & Tao, Wen-Quan, 2024. "Correlations of falling film hydrodynamics and heat transfer on horizontal tubes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    11. Asfand, Faisal & Bourouis, Mahmoud, 2015. "A review of membrane contactors applied in absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 173-191.
    12. Zhai, Chong & Wu, Wei, 2023. "Experimental parameter study and correlation development of microchannel membrane-based absorption process for efficient thermal cooling with high compactness," Energy, Elsevier, vol. 279(C).
    13. Asfand, Faisal & Stiriba, Youssef & Bourouis, Mahmoud, 2015. "CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems," Energy, Elsevier, vol. 91(C), pages 517-530.
    14. Mortazavi, Mehdi & Nasr Isfahani, Rasool & Bigham, Sajjad & Moghaddam, Saeed, 2015. "Absorption characteristics of falling film LiBr (lithium bromide) solution over a finned structure," Energy, Elsevier, vol. 87(C), pages 270-278.
    15. Gluesenkamp, Kyle R. & Chugh, Devesh & Abdelaziz, Omar & Moghaddam, Saeed, 2017. "Efficiency analysis of semi-open sorption heat pump systems," Renewable Energy, Elsevier, vol. 110(C), pages 95-104.
    16. Nasr Isfahani, Rasool & Bigham, Sajjad & Mortazavi, Mehdi & Wei, Xing & Moghaddam, Saeed, 2015. "Impact of micromixing on performance of a membrane-based absorber," Energy, Elsevier, vol. 90(P1), pages 997-1004.
    17. Venegas, M. & de Vega, M. & García-Hernando, N. & Ruiz-Rivas, U., 2016. "A simple model to predict the performance of a H2O–LiBr absorber operating with a microporous membrane," Energy, Elsevier, vol. 96(C), pages 383-393.
    18. Cola, Fabrizio & Hey, Jonathan & Romagnoli, Alessandro, 2018. "Characterization of the droplet formation phase for the H2OLiBr absorber: An analytical and experimental analysis," Applied Energy, Elsevier, vol. 222(C), pages 885-897.
    19. Michel, Benoit & Le Pierrès, Nolwenn & Stutz, Benoit, 2017. "Performances of grooved plates falling film absorber," Energy, Elsevier, vol. 138(C), pages 103-117.
    20. Asfand, Faisal & Stiriba, Youssef & Bourouis, Mahmoud, 2016. "Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems," Energy, Elsevier, vol. 115(P1), pages 781-790.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:109-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.