IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics036054422301890x.html
   My bibliography  Save this article

Numerical evaluation of multi-scale properties in biomass fast pyrolysis in fountain confined conical spouted bed

Author

Listed:
  • Sun, Haoran
  • Yang, Shiliang
  • Bao, Guirong
  • Hu, Jianhang
  • Wang, Hua

Abstract

Biomass fast pyrolysis is one of the promising ways to convert cellulose and lignin into available biochar, bio-oil and product gases. In the current work, the process of biomass fast pyrolysis is numerically studied via the reactive multiphase particle-in-cell (MP-PIC) model in a conical fountain confined spouted fluidized bed to investigate gas-solid motion (e.g., gas and solid fluxes) and particle-scale characteristics (e.g., particle velocity, residence time, temperature, heat transfer coefficient and dispersity). Simulation results have been well validated with experimental data. Biomass and sand behaviors in scenarios with and without fountain confiners have been comprehensively compared. It is recommended to insert a fountain confiner in spouted bed reactor because it can significantly increase the yields of Gas1 and tar of about 115.1% and 118.8%, respectively. The presence of the fountain confiner has resulted in an upward shift of the maximum temperature and HTC for biomass and sand particles, resulting from the enlarged amount of particle accumulation. Due to large temperature difference, biomass and sand particles have highest HTCs at inlet of about 200 W/m2·K and 120 W/m2·K, respectively. The axial dispersion coefficients of biomass and sand particles are two orders larger than the radial one, resulting from distinctive flow pattern in the spouted bed. The axial dispersion coefficients of biomass and sand particles in the fountain confined spouted bed are 1.93 × 10−3 m2/s and 2.40 × 10−4 m2/s, respectively. The relationships between particle parameters in conventional and fountain confined spouted beds are compared. The findings of this study can provide valuable insights into assisting designers in optimizing the design of such reactors.

Suggested Citation

  • Sun, Haoran & Yang, Shiliang & Bao, Guirong & Hu, Jianhang & Wang, Hua, 2023. "Numerical evaluation of multi-scale properties in biomass fast pyrolysis in fountain confined conical spouted bed," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422301890x
    DOI: 10.1016/j.energy.2023.128496
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422301890X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rijo, Bruna & Soares Dias, Ana Paula & Ramos, Marta & Ameixa, Marcelo, 2022. "Valorization of forest waste biomass by catalyzed pyrolysis," Energy, Elsevier, vol. 243(C).
    2. Wang, Dongxiang & Fu, Shuang & Ling, Xiang & Peng, Hao & Yang, Xinjun & Yuan, Fangyang & Du, Jiyun & Yu, Wei, 2023. "Turbulent fluidization and transition velocity of Geldart B granules in a spout–fluidized bed reactor," Energy, Elsevier, vol. 268(C).
    3. Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).
    4. Lin, Junjie & Luo, Kun & Wang, Shuai & Sun, Liyan & Fan, Jianren, 2022. "Particle-scale study of coal-direct chemical looping combustion (CLC)," Energy, Elsevier, vol. 250(C).
    5. Ansari, Khursheed B. & Kamal, Bushra & Beg, Sidra & Wakeel Khan, Md. Aquib & Khan, Mohd Shariq & Al Mesfer, Mohammed K. & Danish, Mohd., 2021. "Recent developments in investigating reaction chemistry and transport effects in biomass fast pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Park, Hoon Chae & Choi, Hang Seok, 2019. "Fast pyrolysis of biomass in a spouted bed reactor: Hydrodynamics, heat transfer and chemical reaction," Renewable Energy, Elsevier, vol. 143(C), pages 1268-1284.
    7. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "CFD study of the reactive gas-solid hydrodynamics in a large-scale catalytic methanol-to-olefin fluidized bed reactor," Energy, Elsevier, vol. 243(C).
    8. Cortazar, M. & Lopez, G. & Alvarez, J. & Amutio, M. & Bilbao, J. & Olazar, M., 2018. "Advantages of confining the fountain in a conical spouted bed reactor for biomass steam gasification," Energy, Elsevier, vol. 153(C), pages 455-463.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Shiliang & Fan, Feihu & Hu, Jianhang & Wang, Hua, 2020. "Particle-scale evaluation of the biomass steam-gasification process in a conical spouted bed gasifier," Renewable Energy, Elsevier, vol. 162(C), pages 844-860.
    2. Yang, Shiliang & Dong, Ruihan & Du, Yanxiang & Wang, Shuai & Wang, Hua, 2021. "Numerical study of the biomass pyrolysis process in a spouted bed reactor through computational fluid dynamics," Energy, Elsevier, vol. 214(C).
    3. He, Qing & Guo, Qinghua & Umeki, Kentaro & Ding, Lu & Wang, Fuchen & Yu, Guangsuo, 2021. "Soot formation during biomass gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    5. Sang Kyu Choi & Yeon Seok Choi & Yeon Woo Jeong & So Young Han & Quynh Van Nguyen, 2020. "Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor," Energies, MDPI, vol. 13(24), pages 1-19, December.
    6. Wang, Wenyan & Liu, Xuan & Zhang, Guangyi & Zhu, Xinyu & Shi, Bowen & Zhang, Jianling & Xu, Guangwen, 2022. "Decoupled combustion of alcohol extracted herb residues with blending wasted activated coke: Insight into in-situ NOx emission control by pyrolysis products," Applied Energy, Elsevier, vol. 323(C).
    7. Fernandez, Enara & Santamaria, Laura & Amutio, Maider & Artetxe, Maite & Arregi, Aitor & Lopez, Gartzen & Bilbao, Javier & Olazar, Martin, 2022. "Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor," Energy, Elsevier, vol. 238(PC).
    8. Dal-Bó, Vanessa & Lira, Taisa & Arrieche, Leonardo & Bacelos, Marcelo, 2019. "Process synthesis for coffee husks to energy using hierarchical approaches," Renewable Energy, Elsevier, vol. 142(C), pages 195-206.
    9. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "CFD study of the reactive gas-solid hydrodynamics in a large-scale catalytic methanol-to-olefin fluidized bed reactor," Energy, Elsevier, vol. 243(C).
    10. Ali Abdulkhani & Zahra Echresh Zadeh & Solomon Gajere Bawa & Fubao Sun & Meysam Madadi & Xueming Zhang & Basudeb Saha, 2023. "Comparative Production of Bio-Oil from In Situ Catalytic Upgrading of Fast Pyrolysis of Lignocellulosic Biomass," Energies, MDPI, vol. 16(6), pages 1-19, March.
    11. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    12. Zhang, Fengxia & Yang, Shiliang & Yang, Bin & Wang, Hua, 2022. "Mesoscale bubble dynamics in the gasifier of a 1MWth dual fluidized bed gasifier for biomass gasification," Energy, Elsevier, vol. 238(PB).
    13. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    14. Małgorzata Sieradzka & Agata Mlonka-Mędrala & Izabela Kalemba-Rec & Markus Reinmöller & Felix Küster & Wojciech Kalawa & Aneta Magdziarz, 2022. "Evaluation of Physical and Chemical Properties of Residue from Gasification of Biomass Wastes," Energies, MDPI, vol. 15(10), pages 1-19, May.
    15. Qi, Penggang & Su, Yinhai & Yang, Liren & Wang, Jiaxing & Jiang, Mei & Xiong, Yuanquan, 2024. "Catalytic pyrolysis of rice husk to co-produce hydrogen-rich syngas, phenol-rich bio-oil and nanostructured porous carbon," Energy, Elsevier, vol. 298(C).
    16. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part I: Chemical pathways and bio-oil upgrading," Renewable Energy, Elsevier, vol. 185(C), pages 483-505.
    17. Yang, Shiliang & Wan, Zhanghao & Wang, Shuai & Wang, Hua, 2020. "Computational fluid study of radial and axial segregation characteristics in a dual fluidized bed reactor system," Energy, Elsevier, vol. 209(C).
    18. Benedikt, F. & Schmid, J.C. & Fuchs, J. & Mauerhofer, A.M. & Müller, S. & Hofbauer, H., 2018. "Fuel flexible gasification with an advanced 100 kW dual fluidized bed steam gasification pilot plant," Energy, Elsevier, vol. 164(C), pages 329-343.
    19. Anirudh Kulkarni & Garima Mishra & Sridhar Palla & Potnuri Ramesh & Dadi Venkata Surya & Tanmay Basak, 2023. "Advances in Computational Fluid Dynamics Modeling for Biomass Pyrolysis: A Review," Energies, MDPI, vol. 16(23), pages 1-32, November.
    20. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422301890x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.