IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7125-d1261770.html
   My bibliography  Save this article

Probabilistic Solar Forecasts as a Binary Event Using a Sky Camera

Author

Listed:
  • Mathieu David

    (PIMENT, University of La Réunion, 97715 Saint-Denis, France)

  • Joaquín Alonso-Montesinos

    (Department of Chemistry and Physics, University of Almería, 04120 Almería, Spain
    CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain)

  • Josselin Le Gal La Salle

    (PIMENT, University of La Réunion, 97715 Saint-Denis, France)

  • Philippe Lauret

    (PIMENT, University of La Réunion, 97715 Saint-Denis, France)

Abstract

With the fast increase of solar energy plants, a high-quality short-term forecast is required to smoothly integrate their production in the electricity grids. Usually, forecasting systems predict the future solar energy as a continuous variable. But for particular applications, such as concentrated solar plants with tracking devices, the operator needs to anticipate the achievement of a solar irradiance threshold to start or stop their system. In this case, binary forecasts are more relevant. Moreover, while most forecasting systems are deterministic, the probabilistic approach provides additional information about their inherent uncertainty that is essential for decision-making. The objective of this work is to propose a methodology to generate probabilistic solar forecasts as a binary event for very short-term horizons between 1 and 30 min. Among the various techniques developed to predict the solar potential for the next few minutes, sky imagery is one of the most promising. Therefore, we propose in this work to combine a state-of-the-art model based on a sky camera and a discrete choice model to predict the probability of an irradiance threshold suitable for plant operators. Two well-known parametric discrete choice models, logit and probit models, and a machine learning technique, random forest, were tested to post-process the deterministic forecast derived from sky images. All three models significantly improve the quality of the original deterministic forecast. However, random forest gives the best results and especially provides reliable probability predictions.

Suggested Citation

  • Mathieu David & Joaquín Alonso-Montesinos & Josselin Le Gal La Salle & Philippe Lauret, 2023. "Probabilistic Solar Forecasts as a Binary Event Using a Sky Camera," Energies, MDPI, vol. 16(20), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7125-:d:1261770
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Logothetis, Stavros-Andreas & Salamalikis, Vasileios & Wilbert, Stefan & Remund, Jan & Zarzalejo, Luis F. & Xie, Yu & Nouri, Bijan & Ntavelis, Evangelos & Nou, Julien & Hendrikx, Niels & Visser, Lenna, 2022. "Benchmarking of solar irradiance nowcast performance derived from all-sky imagers," Renewable Energy, Elsevier, vol. 199(C), pages 246-261.
    2. Whitney K. Newey, 2007. "NONPARAMETRIC CONTINUOUS/DISCRETE CHOICE MODELS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1429-1439, November.
    3. Li, Qi & Racine, Jeffrey S, 2008. "Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 423-434.
    4. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    5. Alonso-Montesinos, J. & Polo, Jesús & Ballestrín, Jesús & Batlles, F.J. & Portillo, C., 2019. "Impact of DNI forecasting on CSP tower plant power production," Renewable Energy, Elsevier, vol. 138(C), pages 368-377.
    6. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    7. Alonso, J. & Batlles, F.J. & López, G. & Ternero, A., 2014. "Sky camera imagery processing based on a sky classification using radiometric data," Energy, Elsevier, vol. 68(C), pages 599-608.
    8. Markus Frölich, 2006. "Non-parametric regression for binary dependent variables," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 511-540, November.
    9. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    10. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.
    11. Alonso, J. & Batlles, F.J., 2014. "Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery," Energy, Elsevier, vol. 73(C), pages 890-897.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alonso-Montesinos, J. & Martínez-Durbán, M. & del Sagrado, J. & del Águila, I.M. & Batlles, F.J., 2016. "The application of Bayesian network classifiers to cloud classification in satellite images," Renewable Energy, Elsevier, vol. 97(C), pages 155-161.
    2. Alonso-Montesinos, J. & Monterreal, R. & Fernández-Reche, J. & Ballestrín, J. & Carra, E. & Polo, J. & Barbero, J. & Batlles, F.J. & López, G. & Enrique, R. & Martínez-Durbán, M. & Marzo, A., 2019. "Intra-hour energy potential forecasting in a central solar power plant receiver combining Meteosat images and atmospheric extinction," Energy, Elsevier, vol. 188(C).
    3. Alonso-Montesinos, J. & Batlles, F.J., 2015. "The use of a sky camera for solar radiation estimation based on digital image processing," Energy, Elsevier, vol. 90(P1), pages 377-386.
    4. Alonso-Montesinos, J. & Batlles, F.J., 2015. "Solar radiation forecasting in the short- and medium-term under all sky conditions," Energy, Elsevier, vol. 83(C), pages 387-393.
    5. Trigo-González, Mauricio & Cortés-Carmona, Marcelo & Marzo, Aitor & Alonso-Montesinos, Joaquín & Martínez-Durbán, Mercedes & López, Gabriel & Portillo, Carlos & Batlles, Francisco Javier, 2023. "Photovoltaic power electricity generation nowcasting combining sky camera images and learning supervised algorithms in the Southern Spain," Renewable Energy, Elsevier, vol. 206(C), pages 251-262.
    6. Alonso, J. & Batlles, F.J., 2014. "Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery," Energy, Elsevier, vol. 73(C), pages 890-897.
    7. Ogliari, Emanuele & Sakwa, Maciej & Cusa, Paolo, 2024. "Enhanced Convolutional Neural Network for solar radiation nowcasting: All-Sky camera infrared images embedded with exogeneous parameters," Renewable Energy, Elsevier, vol. 221(C).
    8. Yang, Dazhi & Sharma, Vishal & Ye, Zhen & Lim, Lihong Idris & Zhao, Lu & Aryaputera, Aloysius W., 2015. "Forecasting of global horizontal irradiance by exponential smoothing, using decompositions," Energy, Elsevier, vol. 81(C), pages 111-119.
    9. Alonso-Montesinos, J. & Polo, Jesús & Ballestrín, Jesús & Batlles, F.J. & Portillo, C., 2019. "Impact of DNI forecasting on CSP tower plant power production," Renewable Energy, Elsevier, vol. 138(C), pages 368-377.
    10. Rodríguez-Benítez, Francisco J. & López-Cuesta, Miguel & Arbizu-Barrena, Clara & Fernández-León, María M. & Pamos-Ureña, Miguel Á. & Tovar-Pescador, Joaquín & Santos-Alamillos, Francisco J. & Pozo-Váz, 2021. "Assessment of new solar radiation nowcasting methods based on sky-camera and satellite imagery," Applied Energy, Elsevier, vol. 292(C).
    11. Marc Henry & Ismael Mourifié, 2013. "Euclidean Revealed Preferences: Testing The Spatial Voting Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 650-666, June.
    12. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    13. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    14. Georgios E. Arnaoutakis & Dimitris A. Katsaprakakis, 2024. "Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems," Energies, MDPI, vol. 17(3), pages 1-12, January.
    15. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    16. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    17. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    18. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    19. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    20. Lixin Cai & Amy Y.C. Liu, 2008. "Public-Private Wage Gap in Australia: Variation Along the Distribution," CEPR Discussion Papers 581, Centre for Economic Policy Research, Research School of Economics, Australian National University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7125-:d:1261770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.