IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp155-161.html
   My bibliography  Save this article

The application of Bayesian network classifiers to cloud classification in satellite images

Author

Listed:
  • Alonso-Montesinos, J.
  • Martínez-Durbán, M.
  • del Sagrado, J.
  • del Águila, I.M.
  • Batlles, F.J.

Abstract

The need to reduce the impact of traditional electricity generation necessitates an increase in the optimization of alternative systems that produce less environmental contamination. Renewables play a key role, with solar energy considered one of the most important energy supply sources. Solar power plants have to be perfectly designed to optimize electricity generation, and their placement must be as suitable as possible for the meteorological conditions. Clouds are the most mitigating factor in solar energy production and their study is decisive in locating the plant. Apart from the importance of studying clouds before building the solar plants, cloud detection is equally decisive in adapting plant operation to cloud types during solar power plant operation.

Suggested Citation

  • Alonso-Montesinos, J. & Martínez-Durbán, M. & del Sagrado, J. & del Águila, I.M. & Batlles, F.J., 2016. "The application of Bayesian network classifiers to cloud classification in satellite images," Renewable Energy, Elsevier, vol. 97(C), pages 155-161.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:155-161
    DOI: 10.1016/j.renene.2016.05.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oak, Neeraj & Lawson, Daniel & Champneys, Alan, 2014. "Performance comparison of renewable incentive schemes using optimal control," Energy, Elsevier, vol. 64(C), pages 44-57.
    2. Alonso-Montesinos, J. & Batlles, F.J., 2015. "The use of a sky camera for solar radiation estimation based on digital image processing," Energy, Elsevier, vol. 90(P1), pages 377-386.
    3. Tverberg, Gail E., 2012. "Oil supply limits and the continuing financial crisis," Energy, Elsevier, vol. 37(1), pages 27-34.
    4. Alonso, J. & Batlles, F.J. & López, G. & Ternero, A., 2014. "Sky camera imagery processing based on a sky classification using radiometric data," Energy, Elsevier, vol. 68(C), pages 599-608.
    5. Martínez-Chico, M. & Batlles, F.J. & Bosch, J.L., 2011. "Cloud classification in a mediterranean location using radiation data and sky images," Energy, Elsevier, vol. 36(7), pages 4055-4062.
    6. Bosch, J.L. & Batlles, F.J. & Zarzalejo, L.F. & López, G., 2010. "Solar resources estimation combining digital terrain models and satellite images techniques," Renewable Energy, Elsevier, vol. 35(12), pages 2853-2861.
    7. Badescu, Viorel & Dumitrescu, Alexandru, 2014. "Simple models to compute solar global irradiance from the CMSAF product Cloud Fractional Coverage," Renewable Energy, Elsevier, vol. 66(C), pages 118-131.
    8. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.
    9. Alonso, J. & Batlles, F.J., 2014. "Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery," Energy, Elsevier, vol. 73(C), pages 890-897.
    10. Robaa, S.M., 2008. "Evaluation of sunshine duration from cloud data in Egypt," Energy, Elsevier, vol. 33(5), pages 785-795.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alonso-Montesinos, J. & Polo, Jesús & Ballestrín, Jesús & Batlles, F.J. & Portillo, C., 2019. "Impact of DNI forecasting on CSP tower plant power production," Renewable Energy, Elsevier, vol. 138(C), pages 368-377.
    2. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    3. Trigo-González, Mauricio & Cortés-Carmona, Marcelo & Marzo, Aitor & Alonso-Montesinos, Joaquín & Martínez-Durbán, Mercedes & López, Gabriel & Portillo, Carlos & Batlles, Francisco Javier, 2023. "Photovoltaic power electricity generation nowcasting combining sky camera images and learning supervised algorithms in the Southern Spain," Renewable Energy, Elsevier, vol. 206(C), pages 251-262.
    4. Cheong Kim & Francis Joseph Costello & Kun Chang Lee & Yuan Li & Chenyao Li, 2019. "Predicting Factors Affecting Adolescent Obesity Using General Bayesian Network and What-If Analysis," IJERPH, MDPI, vol. 16(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alonso-Montesinos, J. & Batlles, F.J., 2015. "Solar radiation forecasting in the short- and medium-term under all sky conditions," Energy, Elsevier, vol. 83(C), pages 387-393.
    2. Alonso-Montesinos, J. & Batlles, F.J., 2015. "The use of a sky camera for solar radiation estimation based on digital image processing," Energy, Elsevier, vol. 90(P1), pages 377-386.
    3. Trigo-González, Mauricio & Cortés-Carmona, Marcelo & Marzo, Aitor & Alonso-Montesinos, Joaquín & Martínez-Durbán, Mercedes & López, Gabriel & Portillo, Carlos & Batlles, Francisco Javier, 2023. "Photovoltaic power electricity generation nowcasting combining sky camera images and learning supervised algorithms in the Southern Spain," Renewable Energy, Elsevier, vol. 206(C), pages 251-262.
    4. Alonso, J. & Batlles, F.J., 2014. "Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery," Energy, Elsevier, vol. 73(C), pages 890-897.
    5. Alonso, J. & Batlles, F.J. & López, G. & Ternero, A., 2014. "Sky camera imagery processing based on a sky classification using radiometric data," Energy, Elsevier, vol. 68(C), pages 599-608.
    6. Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2015. "A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance," Energy, Elsevier, vol. 82(C), pages 570-577.
    7. Mathieu David & Joaquín Alonso-Montesinos & Josselin Le Gal La Salle & Philippe Lauret, 2023. "Probabilistic Solar Forecasts as a Binary Event Using a Sky Camera," Energies, MDPI, vol. 16(20), pages 1-18, October.
    8. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    9. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.
    10. Yang, Dazhi & Sharma, Vishal & Ye, Zhen & Lim, Lihong Idris & Zhao, Lu & Aryaputera, Aloysius W., 2015. "Forecasting of global horizontal irradiance by exponential smoothing, using decompositions," Energy, Elsevier, vol. 81(C), pages 111-119.
    11. Alonso-Montesinos, J. & Monterreal, R. & Fernández-Reche, J. & Ballestrín, J. & Carra, E. & Polo, J. & Barbero, J. & Batlles, F.J. & López, G. & Enrique, R. & Martínez-Durbán, M. & Marzo, A., 2019. "Intra-hour energy potential forecasting in a central solar power plant receiver combining Meteosat images and atmospheric extinction," Energy, Elsevier, vol. 188(C).
    12. Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2013. "Short-term solar irradiance forecasting using exponential smoothing state space model," Energy, Elsevier, vol. 55(C), pages 1104-1113.
    13. Alonso-Montesinos, J. & Polo, Jesús & Ballestrín, Jesús & Batlles, F.J. & Portillo, C., 2019. "Impact of DNI forecasting on CSP tower plant power production," Renewable Energy, Elsevier, vol. 138(C), pages 368-377.
    14. Martínez-Chico, M. & Batlles, F.J. & Bosch, J.L., 2011. "Cloud classification in a mediterranean location using radiation data and sky images," Energy, Elsevier, vol. 36(7), pages 4055-4062.
    15. Jammazi, Rania, 2012. "Oil shock transmission to stock market returns: Wavelet-multivariate Markov switching GARCH approach," Energy, Elsevier, vol. 37(1), pages 430-454.
    16. Ramirez Camargo, Luis & Gruber, Katharina & Nitsch, Felix, 2019. "Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems," Renewable Energy, Elsevier, vol. 133(C), pages 1468-1478.
    17. Tingzhen Ming & Shengnan Lian & Yongjia Wu & Tianhao Shi & Chong Peng & Yueping Fang & Renaud de Richter & Nyuk Hien Wong, 2021. "Numerical Investigation on the Urban Heat Island Effect by Using a Porous Media Model," Energies, MDPI, vol. 14(15), pages 1-23, August.
    18. Yongju Son & Yeunggurl Yoon & Jintae Cho & Sungyun Choi, 2022. "Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    19. Hernández-Escobedo, Q. & Fernández-García, A. & Manzano-Agugliaro, F., 2017. "Solar resource assessment for rural electrification and industrial development in the Yucatan Peninsula (Mexico)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1550-1561.
    20. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:155-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.