IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p553-d1023982.html
   My bibliography  Save this article

Optimisation of Ultrasound Pretreatment of Microalgal Biomass for Effective Biogas Production through Anaerobic Digestion Process

Author

Listed:
  • Roshni Paul

    (Faculty of Computing, Engineering and Built Environment, Birmingham City University, Birmingham B4 7XG, UK)

  • Alla Silkina

    (Swansea University, AlgaeWales Research Group, Bioscience Department, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK)

  • Lynsey Melville

    (Faculty of Computing, Engineering and Built Environment, Birmingham City University, Birmingham B4 7XG, UK)

  • Sri Suhartini

    (Department of Agro-Industrial Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Malang 65145, East Java, Indonesia)

  • Michael Sulu

    (Department of Biochemical Engineering, University College London, London WC1E 6BT, UK)

Abstract

The anaerobic digestion, AD, process presents a solution for sustainable waste management, greenhouse gas mitigation and energy production for growing population needs and requirements. Adopting a biorefinery approach that utilises different feedstock may enhance energy production and support optimisation of the anaerobic digestion process. Algae is a promising feedstock that could be used for energy production via the anaerobic digestion process. Microalgal biomass is rich in carbohydrates and lipids; however, many species of algae exhibit tough cell walls that could also be difficult to digest and may influence or inhibit the efficiency of the AD process. This study concentrated on the comparison of AD remediation of two marine algal biomass species, Tetraselmis suecica and Nannochloropsis oceanica . The two species were pre-treated with an ultrasound technique and compared for their methane production using biochemical methane potential tests. For Tetraselmis , a specific methane production of 0.165 LCH4/KgVS was observed; however, for Nannochloropsis , a value of 0.101 LCH 4 /KgVS was observed for the samples treated with ultrasound. The BMP results from this study show that among the two micro-algae species tested, Tetraselmis suecica is found to be a better substrate for methane production potential. Contrary to increasing the specific methane production, ultrasound cavitation caused a slight decrease in the specific methane production values for both Nannochloropsis oceanica and Tetraselmis suecica biomass residues. The pre-treatment of the biomass using ultrasound techniques provided comparable results and can be recommended for effective bioenergy production. However, further research is required for the optimisation of the pre-treatment of microalgae and for the integration of microalgal biorefineries for circular economy.

Suggested Citation

  • Roshni Paul & Alla Silkina & Lynsey Melville & Sri Suhartini & Michael Sulu, 2023. "Optimisation of Ultrasound Pretreatment of Microalgal Biomass for Effective Biogas Production through Anaerobic Digestion Process," Energies, MDPI, vol. 16(1), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:553-:d:1023982
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/553/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/553/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José Luis Campos & Anuska Mosquera-Corral & Ángeles Val del Rio & Alba Pedrouso, 2022. "Sustainable Wastewater Management and Treatment," Sustainability, MDPI, vol. 14(15), pages 1-4, July.
    2. Cai, Ting & Park, Stephen Y. & Racharaks, Ratanachat & Li, Yebo, 2013. "Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production," Applied Energy, Elsevier, vol. 108(C), pages 486-492.
    3. Alla Silkina & Naomi E. Ginnever & Fleuriane Fernandes & Claudio Fuentes-Grünewald, 2019. "Large-Scale Waste Bio-Remediation Using Microalgae Cultivation as a Platform," Energies, MDPI, vol. 12(14), pages 1-17, July.
    4. Abdo, Hafez & Ackrill, Rob, 2021. "On-farm anaerobic digestion: A disaggregated analysis of the policy challenges for greater uptake," Energy Policy, Elsevier, vol. 153(C).
    5. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Fernández-Gutiérrez & Alejandra Argüelles & Gemma Castejón Martínez & José M. Soriano Disla & Andrés J. Lara-Guillén, 2022. "Unlocking New Value from Urban Biowaste: LCA of the VALUEWASTE Biobased Products," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    2. Mendez, Lara & Mahdy, Ahmed & Ballesteros, Mercedes & González-Fernández, Cristina, 2014. "Methane production of thermally pretreated Chlorella vulgaris and Scenedesmus sp. biomass at increasing biomass loads," Applied Energy, Elsevier, vol. 129(C), pages 238-242.
    3. Tsui, To-Hung & Zhang, Le & Zhang, Jingxin & Dai, Yanjun & Tong, Yen Wah, 2022. "Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Barbera, Elena & Bertucco, Alberto & Kumar, Sandeep, 2018. "Nutrients recovery and recycling in algae processing for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 28-42.
    5. Faried, M. & Samer, M. & Abdelsalam, E. & Yousef, R.S. & Attia, Y.A. & Ali, A.S., 2017. "Biodiesel production from microalgae: Processes, technologies and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 893-913.
    6. Jazzar, Souhir & Olivares-Carrillo, Pilar & Pérez de los Ríos, Antonia & Marzouki, Mohamed Néjib & Acién-Fernández, Francisco Gabriel & Fernández-Sevilla, José María & Molina-Grima, Emilio & Smaali, I, 2015. "Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel," Applied Energy, Elsevier, vol. 148(C), pages 210-219.
    7. Deng, Yawen & Ng Tsan Sheng, Adam & Xu, Jiuping, 2023. "Authority-enterprise equilibrium based mixed subsidy mechanism for the value-added treatment of food waste," Energy, Elsevier, vol. 282(C).
    8. Ombretta Paladino, 2022. "Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    9. Amina Mohamed Ali & Md Alam Zahangir & Fatouma Mohamed Abdoul-Latif & Mohammed Saedi Jami & Jalludin Mohamed & Tarik Ainane, 2023. "Hydrolysis of Food Waste with Immobilized Biofilm as a Pretreatment Method for the Enhancement of Biogas Production," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    10. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Izabela Samson-Bręk & Marlena Owczuk & Anna Matuszewska & Krzysztof Biernat, 2022. "Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions," Energies, MDPI, vol. 15(15), pages 1-22, August.
    12. Chen, Yimin & Xu, Changan & Vaidyanathan, Seetharaman, 2020. "Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production," Applied Energy, Elsevier, vol. 261(C).
    13. Inês Guerra & Hugo Pereira & Margarida Costa & Joana T. Silva & Tamára Santos & João Varela & Marília Mateus & Joana Silva, 2021. "Operation Regimes: A Comparison Based on Nannochloropsis oceanica Biomass and Lipid Productivity," Energies, MDPI, vol. 14(6), pages 1-13, March.
    14. Chowdhury, Raja & Freire, Fausto, 2015. "Bioenergy production from algae using dairy manure as a nutrient source: Life cycle energy and greenhouse gas emission analysis," Applied Energy, Elsevier, vol. 154(C), pages 1112-1121.
    15. Marcin Dębowski & Paulina Rusanowska & Marcin Zieliński & Magda Dudek & Zdzisława Romanowska-Duda, 2018. "Biomass Production and Nutrient Removal by Chlorella vulgaris from Anaerobic Digestion Effluents," Energies, MDPI, vol. 11(7), pages 1-11, June.
    16. Eftychia Ntostoglou & Dilip Khatiwada & Viktoria Martin, 2021. "The Potential Contribution of Decentralized Anaerobic Digestion towards Urban Biowaste Recovery Systems: A Scoping Review," Sustainability, MDPI, vol. 13(23), pages 1-21, December.
    17. Zhang, Lijie & Cheng, Juan & Pei, Haiyan & Pan, Jianqiang & Jiang, Liqun & Hou, Qingjie & Han, Fei, 2018. "Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production," Renewable Energy, Elsevier, vol. 115(C), pages 276-287.
    18. Mahmood, Asad & Hwan Kim, Jung & Park, Jae-Woo, 2021. "Application of metal-air fuel cell electrocoagulation for the harvesting of Nannochloropsis salina marine microalgae," Renewable Energy, Elsevier, vol. 171(C), pages 1224-1235.
    19. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    20. Lisandra Rocha-Meneses & Mario Luna-delRisco & Carlos Arrieta González & Sebastián Villegas Moncada & Andrés Moreno & Jorge Sierra-Del Rio & Luis E. Castillo-Meza, 2023. "An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia," Energies, MDPI, vol. 16(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:553-:d:1023982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.