IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015354.html
   My bibliography  Save this article

Selective H2 production from plastic waste through pyrolysis and in-line oxidative steam reforming

Author

Listed:
  • Suarez, Mayra Alejandra
  • Januszewicz, Katarzyna
  • Cortazar, Maria
  • Lopez, Gartzen
  • Santamaria, Laura
  • Olazar, Martin
  • Artetxe, Maite
  • Amutio, Maider

Abstract

This study deals with the proposal of pyrolysis and in-line oxidative steam reforming (P-OSR) for plastic waste valorization and assesses the potential of this strategy for the selective production of H2. Overall, the study aims at progressing towards the fine-tuning of the pyrolysis-reforming technology by co-feeding O2. Thus, a multi-point O2 injection system has been developed to ensure a suitable O2 distribution in the reforming reactor and avoid the formation of hot spots, as they may cause catalyst deactivation by metal sintering. Moreover, as O2 is directly supplied into the catalytic bed, pre-combustion of the volatile stream before contacting the catalyst is avoided and in-situ coke combustion is promoted. The P-OSR of HDPE was carried out in a two-step reaction system, which combines CSBR (conical spouted bed reactor) and FBR (fluidized bed reactor) technologies. The experiments were conducted in continuous mode and the influence of the main process conditions at zero time on stream was analyzed. Thus, the effect of reforming temperature was studied in the 550–750 °C range, that of the space time from 3.12 to 15.62 gcat min gHDPE−1, steam to plastic (S/P) ratio between 2 and 5 and equivalence ratio (ER) from 0 to 0.3. Under the optimum conditions (700 °C, S/P of 3, 12.5 gcat min gHDPE−1 and ER of 0.2), a H2 production of 25.0 wt% was obtained, which is only 28.6 % lower than that obtained in the conventional pyrolysis-steam reforming (P-SR) process. The results obtained confirm the potential of continuous P-OSR process for the selective production of H2.

Suggested Citation

  • Suarez, Mayra Alejandra & Januszewicz, Katarzyna & Cortazar, Maria & Lopez, Gartzen & Santamaria, Laura & Olazar, Martin & Artetxe, Maite & Amutio, Maider, 2024. "Selective H2 production from plastic waste through pyrolysis and in-line oxidative steam reforming," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015354
    DOI: 10.1016/j.energy.2024.131762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wong, S.L. & Ngadi, N. & Abdullah, T.A.T. & Inuwa, I.M., 2015. "Current state and future prospects of plastic waste as source of fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1167-1180.
    2. Cortazar, M. & Lopez, G. & Alvarez, J. & Amutio, M. & Bilbao, J. & Olazar, M., 2018. "Advantages of confining the fountain in a conical spouted bed reactor for biomass steam gasification," Energy, Elsevier, vol. 153(C), pages 455-463.
    3. Kim, Jae-Kyung & Jeong, Yong-Seong & Kim, Jong-Woo & Kim, Joo-Sik, 2023. "Two-stage thermochemical conversion of polyethylene terephthalate using steam to produce a clean and H2- and CO-rich syngas," Energy, Elsevier, vol. 276(C).
    4. Gluth, A. & Xu, Z. & Fifield, L.S. & Yang, B., 2022. "Advancing biological processing for valorization of plastic wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Lopez, Gartzen & Artetxe, Maite & Amutio, Maider & Bilbao, Javier & Olazar, Martin, 2017. "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 346-368.
    7. Jiang, Yuchen & Li, Xianglin & Li, Chao & Zhang, Lijun & Zhang, Shu & Li, Bin & Wang, Shuang & Hu, Xun, 2022. "Pyrolysis of typical plastics and coupled with steam reforming of their derived volatiles for simultaneous production of hydrogen-rich gases and heavy organics," Renewable Energy, Elsevier, vol. 200(C), pages 476-491.
    8. Ismail, Mohamed M. & Dincer, Ibrahim, 2023. "A new renewable energy based integrated gasification system for hydrogen production from plastic wastes," Energy, Elsevier, vol. 270(C).
    9. Falascino, Eric & Joshi, Rushikesh K. & Kovach, Louann & Isom, Lindsay & Tong, Andrew & Fan, Liang-Shih, 2023. "Biomass chemical looping: Advancements and strategies with the moving bed reactor for gasification and hydrogen generation," Energy, Elsevier, vol. 285(C).
    10. Nugroho, Rusdan Aditya Aji & Alhikami, Akhmad Faruq & Wang, Wei-Cheng, 2023. "Thermal decomposition of polypropylene plastics through vacuum pyrolysis," Energy, Elsevier, vol. 277(C).
    11. Choi, Yujin & Wang, Shuang & Yoon, Young Min & Jang, Jae Jun & Kim, Daewook & Ryu, Ho-Jung & Lee, Doyeon & Won, Yooseob & Nam, Hyungseok & Hwang, Byungwook, 2024. "Sustainable strategy for converting plastic waste into energy over pyrolysis: A comparative study of fluidized-bed and fixed-bed reactors," Energy, Elsevier, vol. 286(C).
    12. Namioka, Tomoaki & Saito, Atsushi & Inoue, Yukiharu & Park, Yeongsu & Min, Tai-jin & Roh, Seon-ah & Yoshikawa, Kunio, 2011. "Hydrogen-rich gas production from waste plastics by pyrolysis and low-temperature steam reforming over a ruthenium catalyst," Applied Energy, Elsevier, vol. 88(6), pages 2019-2026, June.
    13. Sharma, Bhasha & Goswami, Yagyadatta & Sharma, Shreya & Shekhar, Shashank, 2021. "Inherent roadmap of conversion of plastic waste into energy and its life cycle assessment: A frontrunner compendium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    4. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    5. Zhao, Xiang & Klemeš, Jiří Jaromír & Fengqi You,, 2022. "Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Kim, Jung-Hun & Jung, Sungyup & Lee, Taewoo & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Thermo-chemical disposal of plastic waste from end-of-life vehicles (ELVs) using CO2," Energy, Elsevier, vol. 290(C).
    7. Lopez, Gartzen & Artetxe, Maite & Amutio, Maider & Bilbao, Javier & Olazar, Martin, 2017. "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 346-368.
    8. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    9. Chen, Zhijie & Wei, Wei & Chen, Xueming & Liu, Yiwen & Shen, Yansong & Ni, Bing-Jie, 2024. "Upcycling of plastic wastes for hydrogen production: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    10. Chhabra, Vibhuti & Bambery, Keith & Bhattacharya, Sankar & Shastri, Yogendra, 2020. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components," Renewable Energy, Elsevier, vol. 148(C), pages 388-401.
    11. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    12. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    13. Fiyinfoluwa Joan Medaiyese & Hamid Reza Nasriani & Leila Khajenoori & Khalid Khan & Ali Badiei, 2024. "From Waste to Energy: Enhancing Fuel and Hydrogen Production through Pyrolysis and In-Line Reforming of Plastic Wastes," Sustainability, MDPI, vol. 16(12), pages 1-31, June.
    14. Danfeng Zhang & Xin Wang & Liang Zhao & Huaqing Xie & Chen Guo & Feizhou Qian & Hui Dong & Yun Hu, 2023. "Numerical Investigation on Heat Transfer and Flow Resistance Characteristics of Superheater in Hydrocracking Heat Recovery Steam Generator," Energies, MDPI, vol. 16(17), pages 1-15, August.
    15. Onwuemezie, Linus & Gohari Darabkhani, Hamidreza, 2024. "Oxy-hydrogen, solar and wind assisted hydrogen (H2) recovery from municipal plastic waste (MPW) and saltwater electrolysis for better environmental systems and ocean cleanup," Energy, Elsevier, vol. 301(C).
    16. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    17. Kumar, Manish & Bolan, Shiv & Padhye, Lokesh P. & Konarova, Muxina & Foong, Shin Ying & Lam, Su Shiung & Wagland, Stuart & Cao, Runzi & Li, Yang & Batalha, Nuno & Ahmed, Mohamed & Pandey, Ashok & Sidd, 2023. "Retrieving back plastic wastes for conversion to value added petrochemicals: opportunities, challenges and outlooks," Applied Energy, Elsevier, vol. 345(C).
    18. Wang, Yuanqing & Jin, Fangming & Zeng, Xu & Ma, Cuixiang & Wang, Fengwen & Yao, Guodong & Jing, Zhenzi, 2013. "Catalytic activity of Ni3S2 and effects of reactor wall in hydrogen production from water with hydrogen sulphide as a reducer under hydrothermal conditions," Applied Energy, Elsevier, vol. 104(C), pages 306-309.
    19. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    20. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.