IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v327y2022ics0306261922012971.html
   My bibliography  Save this article

Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review

Author

Listed:
  • Mirkarimi, S.M.R.
  • Bensaid, S.
  • Chiaramonti, D.

Abstract

During the last decade, massive production of plastic materials causes a significant amount of waste. This growing trend in waste plastic, and the related negative effect on environment raised many concerns leading to propose different solutions for its disposal, recycle and re-use. Among different methods, landfilling, incineration and mechanical recycling are more conventional, however due to their environmental problems or economic issues, they would not be the best solutions for waste plastic management. The paper presents a review of a more effective process to recover the energy contained in these materials, with a focus of their use for producing fuel thorough the pyrolysis process. This conversion process does not only represent an environmentally friendly solution for the management of waste plastics, but also allows producing a liquid product which can be used for several energy-related applications. The focus of this review paper is to identify an optimum approach for production of maximum waste plastic pyrolysis oil with the characteristic similar to diesel fuel through investigation on various previous studies in this area. To reach this target, a review of the recent studies related to pyrolysis of waste plastics was carried out, and the main parameters affecting the liquid product yield were investigated. Then, the quality of several waste plastic oil (WPO) was compared to the conventional diesel fuels, based on the information reported about their physico-chemical properties, and their application in the diesel engine based on the parameters such as combustion, performance, and emission have been studied.

Suggested Citation

  • Mirkarimi, S.M.R. & Bensaid, S. & Chiaramonti, D., 2022. "Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review," Applied Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922012971
    DOI: 10.1016/j.apenergy.2022.120040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922012971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalargaris, Ioannis & Tian, Guohong & Gu, Sai, 2017. "The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine," Energy, Elsevier, vol. 131(C), pages 179-185.
    2. Wong, S.L. & Ngadi, N. & Abdullah, T.A.T. & Inuwa, I.M., 2015. "Current state and future prospects of plastic waste as source of fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1167-1180.
    3. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2020. "Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes," Applied Energy, Elsevier, vol. 259(C).
    4. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    5. Rigamonti, L. & Grosso, M. & Møller, J. & Martinez Sanchez, V. & Magnani, S. & Christensen, T.H., 2014. "Environmental evaluation of plastic waste management scenarios," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 42-53.
    6. Mani, M. & Nagarajan, G. & Sampath, S., 2011. "Characterisation and effect of using waste plastic oil and diesel fuel blends in compression ignition engine," Energy, Elsevier, vol. 36(1), pages 212-219.
    7. Williams, Paul T. & Slaney, Edward, 2007. "Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures," Resources, Conservation & Recycling, Elsevier, vol. 51(4), pages 754-769.
    8. Devaraj, J. & Robinson, Y. & Ganapathi, P., 2015. "Experimental investigation of performance, emission and combustion characteristics of waste plastic pyrolysis oil blended with diethyl ether used as fuel for diesel engine," Energy, Elsevier, vol. 85(C), pages 304-309.
    9. Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fiyinfoluwa Joan Medaiyese & Hamid Reza Nasriani & Leila Khajenoori & Khalid Khan & Ali Badiei, 2024. "From Waste to Energy: Enhancing Fuel and Hydrogen Production through Pyrolysis and In-Line Reforming of Plastic Wastes," Sustainability, MDPI, vol. 16(12), pages 1-31, June.
    2. Chen, Zhijie & Wei, Wei & Chen, Xueming & Liu, Yiwen & Shen, Yansong & Ni, Bing-Jie, 2024. "Upcycling of plastic wastes for hydrogen production: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    3. Alrazen, Hayder A. & Aminossadati, Saiied M. & Mahmood, Hussein A. & Hasan, M.M. & Abdulkreem-Alsultan, G. & Konarova, Muxina, 2023. "Theoretical investigation of combustion and emissions of CI engines fueled by various blends of depolymerized low-density polythene and diesel with co-solvent additives," Energy, Elsevier, vol. 282(C).
    4. Anastasia Zabaniotou & Ioannis Vaskalis, 2023. "Economic Assessment of Polypropylene Waste (PP) Pyrolysis in Circular Economy and Industrial Symbiosis," Energies, MDPI, vol. 16(2), pages 1-26, January.
    5. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
    2. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Chonlakarn Wongkhorsub & Wantana Chaowasin & Kampanart Theinnoi, 2022. "Experimental Evaluation of Performance and Combustion Characteristics of Blended Plastic Pyrolysis Oil in Enhanced Diesel Engine," Energies, MDPI, vol. 15(23), pages 1-17, December.
    4. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    5. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    6. Sogand Musivand & Maria Paola Bracciale & Martina Damizia & Paolo De Filippis & Benedetta de Caprariis, 2023. "Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis," Energies, MDPI, vol. 16(13), pages 1-13, June.
    7. Chaitanya, A.V. Krishna & Mohanty, Dillip Kumar, 2022. "Experimental investigation on the combustion, performance and emission characteristics of 1-pentanol blended waste plastic oil in a CRDI engine with EGR," Energy, Elsevier, vol. 256(C).
    8. Augusto Fernando de Freitas Costa & Caio Campos Ferreira & Simone Patrícia Aranha da Paz & Marcelo Costa Santos & Luiz Gabriel Santos Moreira & Neyson Martins Mendonça & Fernanda Paula da Costa Assunç, 2023. "Catalytic Upgrading of Plastic Waste of Electric and Electronic Equipment (WEEE) Pyrolysis Vapors over Si–Al Ash Pellets in a Two-Stage Reactor," Energies, MDPI, vol. 16(1), pages 1-32, January.
    9. Dobó, Zsolt & Jakab, Zsófia & Nagy, Gábor & Koós, Tamás & Szemmelveisz, Katalin & Muránszky, Gábor, 2019. "Transportation fuel from plastic wastes: Production, purification and SI engine tests," Energy, Elsevier, vol. 189(C).
    10. Alexey Paukov & Romen Magaril & Elena Magaril, 2019. "An Investigation of the Feasibility of the Organic Municipal Solid Waste Processing by Coking," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    11. Somkiat Maithomklang & Ekarong Sukjit & Jiraphon Srisertpol & Niti Klinkaew & Khatha Wathakit, 2023. "Pyrolysis Oil Derived from Plastic Bottle Caps: Characterization of Combustion and Emissions in a Diesel Engine," Energies, MDPI, vol. 16(5), pages 1-21, March.
    12. Chalita Kaewbuddee & Somkiat Maithomklang & Prasert Aengchuan & Attasit Wiangkham & Niti Klinkaew & Atthaphon Ariyarit & Ekarong Sukjit, 2023. "Effects of Alcohol-Blended Waste Plastic Oil on Engine Performance Characteristics and Emissions of a Diesel Engine," Energies, MDPI, vol. 16(3), pages 1-25, January.
    13. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    14. Rahman, Md Hafizur & Bhoi, Prakashbhai R. & Menezes, Pradeep L., 2023. "Pyrolysis of waste plastics into fuels and chemicals: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Alrazen, Hayder A. & Aminossadati, Saiied M. & Mahmood, Hussein A. & Hasan, M.M. & Abdulkreem-Alsultan, G. & Konarova, Muxina, 2023. "Theoretical investigation of combustion and emissions of CI engines fueled by various blends of depolymerized low-density polythene and diesel with co-solvent additives," Energy, Elsevier, vol. 282(C).
    16. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Ana B. Cuevas & David E. Leiva-Candia & M. P. Dorado, 2024. "An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy," Energies, MDPI, vol. 17(12), pages 1-32, June.
    18. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    19. Tomasz Suchocki, 2024. "Sustainable Energy Application of Pyrolytic Oils from Plastic Waste in Gas Turbine Engines: Performance, Environmental, and Economic Analysis," Sustainability, MDPI, vol. 16(19), pages 1-19, October.
    20. Fiyinfoluwa Joan Medaiyese & Hamid Reza Nasriani & Leila Khajenoori & Khalid Khan & Ali Badiei, 2024. "From Waste to Energy: Enhancing Fuel and Hydrogen Production through Pyrolysis and In-Line Reforming of Plastic Wastes," Sustainability, MDPI, vol. 16(12), pages 1-31, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922012971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.