IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics0360544222019879.html
   My bibliography  Save this article

Activated carbon from olive tree pruning residue for symmetric solid-state supercapacitor

Author

Listed:
  • Ponce, M. Federico
  • Mamani, Arminda
  • Jerez, Florencia
  • Castilla, Josué
  • Ramos, Pamela B.
  • Acosta, Gerardo G.
  • Sardella, M. Fabiana
  • Bavio, Marcela A.

Abstract

The scientific community is focusing on developing supercapacitors with high capacitance, power and energy from waste-derived electrode materials and low-toxic aqueous electrolytes that can provide an advance in energy storage as well as the care for the environment. This work presents the development of a symmetric solid-state supercapacitor with activated carbon from olive pruning. Activated carbons were synthesized by chemical and physical methods varying their conditions. The physicochemical characterization determined that chemically activated carbons provided the highest surface areas, greater than 2000 m2 g−1. The electrochemical performance of chemically activated carbons was superior to physically activated carbons due to the high surface area and the developed pore structure that promote capacitances of up to 410 F g−1. Three symmetric solid-state supercapacitors with chemically activated carbon as electrode material and PVA-KOH hydrogel as electrolyte were assembled, and windows potential and drying time of the membrane were evaluated. An excellent performance supercapacitor was developed with electrode materials from olive pruning waste, which presented a capacitance of 1.15 F at 5 mA, a voltage of 1.2 V and equivalent series resistance of 1.42 Ω. These results present a promising way to develop competitive energy storage devices using agro-industrial waste to produce electrode materials.

Suggested Citation

  • Ponce, M. Federico & Mamani, Arminda & Jerez, Florencia & Castilla, Josué & Ramos, Pamela B. & Acosta, Gerardo G. & Sardella, M. Fabiana & Bavio, Marcela A., 2022. "Activated carbon from olive tree pruning residue for symmetric solid-state supercapacitor," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019879
    DOI: 10.1016/j.energy.2022.125092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222019879
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González, Ander & Goikolea, Eider & Barrena, Jon Andoni & Mysyk, Roman, 2016. "Review on supercapacitors: Technologies and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1189-1206.
    2. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    3. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    4. Golkhatmi, Sanaz Zarabi & Sedghi, Arman & Miankushki, Hoda Nourmohammadi & Khalaj, Maryam, 2021. "Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes," Energy, Elsevier, vol. 214(C).
    5. Pappu, Samhita & Rao, Tata N. & Martha, Surendra K. & Bulusu, Sarada V., 2022. "Electrodeposited Manganese Oxide based Redox Mediator Driven 2.2 V High Energy Density Aqueous Supercapacitor," Energy, Elsevier, vol. 243(C).
    6. Sakthivel, Mani & Ramki, Settu & Chen, Shen-Ming & Ho, Kuo-Chuan, 2022. "Defect rich Se–CoWS2 as anode and banana flower skin-derived activated carbon channels with interconnected porous structure as cathode materials for asymmetric supercapacitor application," Energy, Elsevier, vol. 257(C).
    7. Cheng, Jie & Hu, Sheng-Chun & Sun, Guo-Tao & Kang, Kang & Zhu, Ming-Qiang & Geng, Zeng-Chao, 2021. "Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application," Energy, Elsevier, vol. 215(PB).
    8. Liu, Mengjie & Wang, Lei & Yu, Xinyao & Zhang, Hao & Zhang, Hui & Li, Shikuo & Huang, Fangzhi, 2022. "Introducing oxygen vacancies for improving the electrochemical performance of Co9S8@NiCo-LDH nanotube arrays in flexible all-solid battery-capacitor hybrid supercapacitors," Energy, Elsevier, vol. 238(PB).
    9. Bavio, M.A. & Acosta, G.G. & Kessler, T. & Visintin, A., 2017. "Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline - carbon nanotubes," Energy, Elsevier, vol. 130(C), pages 22-28.
    10. Sun, Bingkang & Zhang, Xiaoyun & Fan, Xing & Wang, Ruiyu & Bai, Hongcun & Wei, Xianyong, 2022. "Interface modification based on MnO2@N-doped activated carbon composites for flexible solid-state asymmetric supercapacitors," Energy, Elsevier, vol. 249(C).
    11. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    12. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).
    13. Gao, Yu & Li, Lei & Jin, Yuming & Wang, Yu & Yuan, Chuanjun & Wei, Yingjin & Chen, Gang & Ge, Junjie & Lu, Haiyan, 2015. "Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor," Applied Energy, Elsevier, vol. 153(C), pages 41-47.
    14. Shrivastav, Vishal & Sundriyal, Shashank & Tiwari, Umesh K. & Kim, Ki-Hyun & Deep, Akash, 2021. "Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yang & Xing, Kai & Yan, Minyue & Zhu, Xun & Ye, Dingding & Chen, Rong & Liao, Qiang, 2023. "A potential flexible fuel cell with dual-functional hydrogel based on multi-component crosslinked hybrid polyvinyl alcohol," Energy, Elsevier, vol. 265(C).
    2. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    3. Lv, Chunfei & Ma, Xiaojun & Guo, Ranran & Li, Dongna & Hua, Xuewen & Jiang, Tianyu & Li, Hongpeng & Liu, Yang, 2023. "Polypyrrole-decorated hierarchical carbon aerogel from liquefied wood enabling high energy density and capacitance supercapacitor," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hongwei & Wang, Yongzhen & Lv, Liang & Liu, Xiao & Wang, Ziqi & Liu, Jun, 2023. "Oxygen-enriched hierarchical porous carbons derived from lignite for high-performance supercapacitors," Energy, Elsevier, vol. 269(C).
    2. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    3. Sun, Bingkang & Zhang, Xiaoyun & Fan, Xing & Wang, Ruiyu & Bai, Hongcun & Wei, Xianyong, 2022. "Interface modification based on MnO2@N-doped activated carbon composites for flexible solid-state asymmetric supercapacitors," Energy, Elsevier, vol. 249(C).
    4. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    5. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Sun, Guo-Tao & Hu, Li-Le & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2021. "Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications," Renewable Energy, Elsevier, vol. 177(C), pages 82-94.
    6. Zhang, Ziyun & Wang, Shilong & Chen, Xiaomin & Han, Sheng & Jiang, Jibo, 2024. "Built-in electric field and selenium vacancies synergistically enhance NiSe2@Co0.85Se high-performance supercapacitors," Energy, Elsevier, vol. 293(C).
    7. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    8. Lv, Chunfei & Ma, Xiaojun & Guo, Ranran & Li, Dongna & Hua, Xuewen & Jiang, Tianyu & Li, Hongpeng & Liu, Yang, 2023. "Polypyrrole-decorated hierarchical carbon aerogel from liquefied wood enabling high energy density and capacitance supercapacitor," Energy, Elsevier, vol. 270(C).
    9. Li, Haowen & Yang, Huachao & Yan, Jianhua & Cen, Kefa & Ostrikov, Kostya (Ken) & Bo, Zheng, 2022. "Energy and entropy generation analysis in a supercapacitor for different operating conditions," Energy, Elsevier, vol. 260(C).
    10. Sakthivel, Mani & Ramki, Settu & Chen, Shen-Ming & Ho, Kuo-Chuan, 2022. "Defect rich Se–CoWS2 as anode and banana flower skin-derived activated carbon channels with interconnected porous structure as cathode materials for asymmetric supercapacitor application," Energy, Elsevier, vol. 257(C).
    11. Jiang, Zhuosheng & Zhai, Shengli & Huang, Mingzhi & Songsiriritthigul, Prayoon & Aung, Su Htike & Oo, Than Zaw & Luo, Min & Chen, Fuming, 2021. "3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics," Energy, Elsevier, vol. 227(C).
    12. Théophile Paul & Tedjani Mesbahi & Sylvain Durand & Damien Flieller & Wilfried Uhring, 2020. "Sizing of Lithium-Ion Battery/Supercapacitor Hybrid Energy Storage System for Forklift Vehicle," Energies, MDPI, vol. 13(17), pages 1-18, September.
    13. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    14. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    15. Caizán-Juanarena, Leire & Sleutels, Tom & Borsje, Casper & ter Heijne, Annemiek, 2020. "Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems," Renewable Energy, Elsevier, vol. 157(C), pages 782-792.
    16. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    17. Younghun Choi & Takuro Kobashi & Yoshiki Yamagata & Akito Murayama, 2021. "Assessment of waterfront office redevelopment plan on optimal building energy demand and rooftop photovoltaics for urban decarbonization," Papers 2108.09029, arXiv.org.
    18. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    19. Moon, Yongma & Baran, Mesut, 2018. "Economic analysis of a residential PV system from the timing perspective: A real option model," Renewable Energy, Elsevier, vol. 125(C), pages 783-795.
    20. Muhammad Yaseen & Muhammad Arif Khan Khattak & Muhammad Humayun & Muhammad Usman & Syed Shaheen Shah & Shaista Bibi & Bakhtiar Syed Ul Hasnain & Shah Masood Ahmad & Abbas Khan & Nasrullah Shah & Asif , 2021. "A Review of Supercapacitors: Materials Design, Modification, and Applications," Energies, MDPI, vol. 14(22), pages 1-40, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.