IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2279-d239756.html
   My bibliography  Save this article

Performance Analysis of a Small-Scale ORC Trigeneration System Powered by the Combustion of Olive Pomace

Author

Listed:
  • Andrea Colantoni

    (Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, SNC, 01100 Viterbo, Italy)

  • Mauro Villarini

    (Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, SNC, 01100 Viterbo, Italy)

  • Vera Marcantonio

    (Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, SNC, 01100 Viterbo, Italy)

  • Francesco Gallucci

    (CREA Centro di Ricerca Ingegneria e Trasformazioni agroalimentari, Via della Pascolare 16, 00015 Monterotondo, Rome, Italy)

  • Massimo Cecchini

    (Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, SNC, 01100 Viterbo, Italy)

Abstract

The utilisation of low- and medium-temperature energy allows to reduce the energy shortage and environmental pollution problems because low-grade energy is plentiful in nature and renewable as well. In the past two decades, thanks to its feasibility and reliability, the organic Rankine cycle (ORC) has received great attention. The present work is focused on a small-scale (7.5 kW nominal electric power) combined cooling, heating and power ORC system powered by the combustion of olive pomace obtained as a by-product in the olive oil production process from an olive farm situated in the central part of Italy. The analysis of the employment of this energy system is based on experimental data and Aspen Plus simulation, including biomass and combustion tests, biomass availability and energy production analysis, Combined Cooling Heat and Power (CCHP) system sizing and assessment. Different low environmental impact working fluids and various operative process parameters were investigated. Olive pomace has been demonstrated to be suitable for the energy application and, in this case, to be able to satisfy the energy consumption of the same olive farm with the option of responding to further energy users. Global electrical efficiency varied from 12.7% to 19.4%, depending on the organic fluid used and the working pressure at the steam generator.

Suggested Citation

  • Andrea Colantoni & Mauro Villarini & Vera Marcantonio & Francesco Gallucci & Massimo Cecchini, 2019. "Performance Analysis of a Small-Scale ORC Trigeneration System Powered by the Combustion of Olive Pomace," Energies, MDPI, vol. 12(12), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2279-:d:239756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wieland, Christoph & Meinel, Dominik & Eyerer, Sebastian & Spliethoff, Hartmut, 2016. "Innovative CHP concept for ORC and its benefit compared to conventional concepts," Applied Energy, Elsevier, vol. 183(C), pages 478-490.
    2. Cataldo, Filippo & Mastrullo, Rita & Mauro, Alfonso William & Vanoli, Giuseppe Peter, 2014. "Fluid selection of Organic Rankine Cycle for low-temperature waste heat recovery based on thermal optimization," Energy, Elsevier, vol. 72(C), pages 159-167.
    3. Anifantis, Alexandros Sotirios & Colantoni, Andrea & Pascuzzi, Simone, 2017. "Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating," Renewable Energy, Elsevier, vol. 103(C), pages 115-127.
    4. Wang, Jiansheng & Diao, Mengzhen & Yue, Kaihong, 2017. "Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method," Energy, Elsevier, vol. 141(C), pages 97-107.
    5. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Michele Moretti & Enrico Bocci, 2018. "Life Cycle Performance of Hydrogen Production via Agro-Industrial Residue Gasification—A Small Scale Power Plant Study," Energies, MDPI, vol. 11(3), pages 1-19, March.
    6. Cobuloglu, Halil I. & Büyüktahtakın, İ. Esra, 2015. "Food vs. biofuel: An optimization approach to the spatio-temporal analysis of land-use competition and environmental impacts," Applied Energy, Elsevier, vol. 140(C), pages 418-434.
    7. Sharmina Begum & Mohammad G. Rasul & Delwar Akbar & Naveed Ramzan, 2013. "Performance Analysis of an Integrated Fixed Bed Gasifier Model for Different Biomass Feedstocks," Energies, MDPI, vol. 6(12), pages 1-17, December.
    8. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    9. Collings, Peter & Yu, Zhibin & Wang, Enhua, 2016. "A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions," Applied Energy, Elsevier, vol. 171(C), pages 581-591.
    10. Barbanera, M. & Lascaro, E. & Stanzione, V. & Esposito, A. & Altieri, R. & Bufacchi, M., 2016. "Characterization of pellets from mixing olive pomace and olive tree pruning," Renewable Energy, Elsevier, vol. 88(C), pages 185-191.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Briola, Stefano & Gabbrielli, Roberto & Baccioli, Andrea & Fino, Andrea & Bischi, Aldo, 2021. "Thermo-economic analysis of a novel trigeneration cycle enabled by two-phase machines," Energy, Elsevier, vol. 227(C).
    2. Vera Marcantonio & Enrico Bocci & Danilo Monarca, 2019. "Development of a Chemical Quasi-Equilibrium Model of Biomass Waste Gasification in a Fluidized-Bed Reactor by Using Aspen Plus," Energies, MDPI, vol. 13(1), pages 1-15, December.
    3. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    4. Andrea Colantoni & Rodolfo Picchio & Alvaro Marucci & Elena Di Mattia & Valerio Cristofori & Fabio Recanatesi & Mauro Villarini & Danilo Monarca & Massimo Cecchini, 2020. "WP3—Innovation in Agriculture and Forestry Sector for Energetic Sustainability," Energies, MDPI, vol. 13(22), pages 1-7, November.
    5. Vera Marcantonio & Michael Müller & Enrico Bocci, 2021. "A Review of Hot Gas Cleaning Techniques for Hydrogen Chloride Removal from Biomass-Derived Syngas," Energies, MDPI, vol. 14(20), pages 1-15, October.
    6. Dumitrascu Gheorghe & Feidt Michel & Popescu Aristotel & Grigorean Stefan, 2019. "Endoreversible Trigeneration Cycle Design Based on Finite Physical Dimensions Thermodynamics," Energies, MDPI, vol. 12(16), pages 1-21, August.
    7. Rajabi Hamedani, Sara & Villarini, Mauro & Marcantonio, Vera & di Matteo, Umberto & Monarca, Danilo & Colantoni, Andrea, 2023. "Comparative energy and environmental analysis of different small-scale biomass-fueled CCHP systems," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    2. Rajabi Hamedani, Sara & Villarini, Mauro & Marcantonio, Vera & di Matteo, Umberto & Monarca, Danilo & Colantoni, Andrea, 2023. "Comparative energy and environmental analysis of different small-scale biomass-fueled CCHP systems," Energy, Elsevier, vol. 263(PD).
    3. Vera Marcantonio & Michael Müller & Enrico Bocci, 2021. "A Review of Hot Gas Cleaning Techniques for Hydrogen Chloride Removal from Biomass-Derived Syngas," Energies, MDPI, vol. 14(20), pages 1-15, October.
    4. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    5. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    6. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    7. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    8. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    9. Roberto Pili & Hartmut Spliethoff & Christoph Wieland, 2017. "Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler," Energies, MDPI, vol. 10(4), pages 1-28, April.
    10. Krail, Jürgen & Beckmann, Georg & Schittl, Florian & Piringer, Gerhard, 2023. "Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid," Energy, Elsevier, vol. 266(C).
    11. Haji Esmaeili, Seyed Ali & Szmerekovsky, Joseph & Sobhani, Ahmad & Dybing, Alan & Peterson, Tim O., 2020. "Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers," Energy Policy, Elsevier, vol. 138(C).
    12. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
    13. Artur Kraszkiewicz & Artur Przywara & Alexandros Sotirios Anifantis, 2020. "Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels," Energies, MDPI, vol. 13(10), pages 1-13, May.
    14. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    15. Wang, Enhua & Zhang, Hongguang & Fan, Boyuan & Ouyang, Minggao & Yang, Kai & Yang, Fuyuan & Li, Xiaojuan & Wang, Zhen, 2015. "3D numerical analysis of exhaust flow inside a fin-and-tube evaporator used in engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 800-812.
    16. Costante Invernizzi & Marco Binotti & Paola Bombarda & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2019. "Water Mixtures as Working Fluids in Organic Rankine Cycles," Energies, MDPI, vol. 12(13), pages 1-17, July.
    17. Ilaria Zambon & Artemi Cerdà & Sirio Cividino & Luca Salvati, 2019. "The (Evolving) Vineyard’s Age Structure in the Valencian Community, Spain: A New Demographic Approach for Rural Development and Landscape Analysis," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
    18. Changchang Liu & Chuxiong Deng & Zhongwu Li & Yaojun Liu & Shuyuan Wang, 2022. "Optimization of Spatial Pattern of Land Use: Progress, Frontiers, and Prospects," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    19. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    20. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2279-:d:239756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.