Methane Pyrolysis with the Use of Plasma: Review of Plasma Reactors and Process Products
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Malek Msheik & Sylvain Rodat & Stéphane Abanades, 2021. "Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis," Energies, MDPI, vol. 14(11), pages 1-35, May.
- Zbigniew Rogala & Michał Stanclik & Dariusz Łuszkiewicz & Ziemowit Malecha, 2023. "Perspectives for the Use of Biogas and Biomethane in the Context of the Green Energy Transformation on the Example of an EU Country," Energies, MDPI, vol. 16(4), pages 1-11, February.
- Mohammadreza Taheraslani & Han Gardeniers, 2020. "Coupling of CH 4 to C 2 Hydrocarbons in a Packed Bed DBD Plasma Reactor: The Effect of Dielectric Constant and Porosity of the Packing," Energies, MDPI, vol. 13(2), pages 1-19, January.
- Seunghyun Cheon & Manhee Byun & Dongjun Lim & Hyunjun Lee & Hankwon Lim, 2021. "Parametric Study for Thermal and Catalytic Methane Pyrolysis for Hydrogen Production: Techno-Economic and Scenario Analysis," Energies, MDPI, vol. 14(19), pages 1-19, September.
- Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
- Niccolò Caramanico & Giuseppe Di Florio & Maria Camilla Baratto & Viviana Cigolotti & Riccardo Basosi & Elena Busi, 2021. "Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy," Energies, MDPI, vol. 14(18), pages 1-24, September.
- Tamás I. Korányi & Miklós Németh & Andrea Beck & Anita Horváth, 2022. "Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production," Energies, MDPI, vol. 15(17), pages 1-14, August.
- Majidi Bidgoli, Abbas & Ghorbanzadeh, Atamalek & Lotfalipour, Raheleh & Roustaei, Ehsan & Zakavi, Marjan, 2017. "Gliding spark plasma: Physical principles and performance in direct pyrolysis of methane," Energy, Elsevier, vol. 125(C), pages 705-715.
- Nicolae I. Badea, 2021. "Hydrogen as Energy Sources—Basic Concepts," Energies, MDPI, vol. 14(18), pages 1-22, September.
- Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
- Kamil Wróbel & Justyna Wróbel & Wojciech Tokarz & Jakub Lach & Katarzyna Podsadni & Andrzej Czerwiński, 2022. "Hydrogen Internal Combustion Engine Vehicles: A Review," Energies, MDPI, vol. 15(23), pages 1-13, November.
- Indarto, Antonius & Choi, Jae-Wook & Lee, Hwaung & Song, Hyung Keun, 2006. "Effect of additive gases on methane conversion using gliding arc discharge," Energy, Elsevier, vol. 31(14), pages 2986-2995.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Thanaset Thosdeekoraphat & Supawat Kotchapradit & Watcharapong Bunpradit & Worawut Boonpeang & Chanchai Thongsopa & Samran Santalunai, 2024. "Improving the Power Efficiency of a Microwave Plasma Source by Using the Principle of a Variable-Impedance Waveguide," Energies, MDPI, vol. 17(12), pages 1-21, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
- Gayatri Udaysinh Ingale & Hyun-Min Kwon & Soohwa Jeong & Dongho Park & Whidong Kim & Byeingryeol Bang & Young-Il Lim & Sung Won Kim & Youn-Bae Kang & Jungsoo Mun & Sunwoo Jun & Uendo Lee, 2022. "Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming," Energies, MDPI, vol. 15(22), pages 1-20, November.
- Rahmati, Hamed & Ghorbanzadeh, Atamalek, 2021. "Parallel electrodes gliding plasma: Working principles and application in dry reforming of methane," Energy, Elsevier, vol. 230(C).
- Gao, Yuan & Zhang, Shuai & Sun, Hao & Wang, Ruixue & Tu, Xin & Shao, Tao, 2018. "Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges," Applied Energy, Elsevier, vol. 226(C), pages 534-545.
- Muxi Wang & Akira Matsugi & Yoshinori Kondo & Yosuke Sakamoto & Yoshizumi Kajii, 2023. "Impact of Hydrogen Mixture on Fuel Consumption and Exhaust Gas Emissions in a Truck with Direct-Injection Diesel Engine," Energies, MDPI, vol. 16(11), pages 1-12, May.
- Wu, Zuliang & Zhou, Weili & Hao, Xiaodong & Zhang, Xuming, 2019. "Plasma reforming of n-pentane as a simulated gasoline to hydrogen and cleaner carbon-based fuels," Energy, Elsevier, vol. 189(C).
- Vadikkeettil, Yugesh & Subramaniam, Yugeswaran & Murugan, Ramaswamy & Ananthapadmanabhan, P.V. & Mostaghimi, Javad & Pershin, Larry & Batiot-Dupeyrat, Catherine & Kobayashi, Yasukazu, 2022. "Plasma assisted decomposition and reforming of greenhouse gases: A review of current status and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Chung, Wei-Chieh & Chang, Moo-Been, 2016. "Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 13-31.
- Sirui Tong & Bin Miao & Lan Zhang & Siew Hwa Chan, 2022. "Decarbonizing Natural Gas: A Review of Catalytic Decomposition and Carbon Formation Mechanisms," Energies, MDPI, vol. 15(7), pages 1-30, April.
- Wang, Qiuying & Zhu, Xiaomei & Sun, Bing & Li, Zhi & Liu, Jinglin, 2022. "Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy," Applied Energy, Elsevier, vol. 328(C).
- Liu, Heng & Yang, Shuang & Wu, Shujie & Shang, Fanpeng & Yu, Xiaofang & Xu, Chen & Guan, Jingqi & Kan, Qiubin, 2011. "Synthesis of Mo/TNU-9 (TNU-9 Taejon National University No. 9) catalyst and its catalytic performance in methane non-oxidative aromatization," Energy, Elsevier, vol. 36(3), pages 1582-1589.
- Gayathri Priya Iragavarapu & Syed Shahed Imam & Omprakash Sarkar & Srinivasula Venkata Mohan & Young-Cheol Chang & Motakatla Venkateswar Reddy & Sang-Hyoun Kim & Naresh Kumar Amradi, 2023. "Bioprocessing of Waste for Renewable Chemicals and Fuels to Promote Bioeconomy," Energies, MDPI, vol. 16(9), pages 1-24, May.
- Oleg A. Kolenchukov & Kirill A. Bashmur & Vladimir V. Bukhtoyarov & Sergei O. Kurashkin & Vadim S. Tynchenko & Elena V. Tsygankova & Roman B. Sergienko & Vladislav V. Kukartsev, 2022. "Experimental Study of Oil Non-Condensable Gas Pyrolysis in a Stirred-Tank Reactor for Catalysis of Hydrogen and Hydrogen-Containing Mixtures Production," Energies, MDPI, vol. 15(22), pages 1-16, November.
- Dong Kyoo Park & Ji-Hyeon Kim & Hyo-Sik Kim & Jin-Ho Kim & Jae-Hong Ryu, 2023. "Possibility Study in CO 2 Free Hydrogen Production Using Dodecane (C 12 H 26 ) from Plasma Reaction," Energies, MDPI, vol. 16(4), pages 1-13, February.
- Eugenio Giacomazzi & Guido Troiani & Antonio Di Nardo & Giorgio Calchetti & Donato Cecere & Giuseppe Messina & Simone Carpenella, 2023. "Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition," Energies, MDPI, vol. 16(20), pages 1-30, October.
- Jinho Boo & Eun Hee Ko & No-Kuk Park & Changkook Ryu & Yo-Han Kim & Jinmo Park & Dohyung Kang, 2021. "Methane Pyrolysis in Molten Potassium Chloride: An Experimental and Economic Analysis," Energies, MDPI, vol. 14(23), pages 1-15, December.
- Zoltán Csedő & József Magyari & Máté Zavarkó, 2022. "Dynamic Corporate Governance, Innovation, and Sustainability: Post-COVID Period," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
- Rafiq, M.H. & Hustad, J.E., 2011. "Experimental and thermodynamic studies of the catalytic partial oxidation of model biogas using a plasma-assisted gliding arc reactor," Renewable Energy, Elsevier, vol. 36(11), pages 2878-2887.
- Evgeniy Yurevich Titov & Ivan Vasilevich Bodrikov & Alexander Leonidovich Vasiliev & Yuriy Alekseevich Kurskii & Anna Gennadievna Ivanova & Andrey Leonidovich Golovin & Dmitry Alekseevich Shirokov & D, 2023. "Non-Thermal Plasma Pyrolysis of Fuel Oil in the Liquid Phase," Energies, MDPI, vol. 16(10), pages 1-20, May.
- Amin Zhou & Dong Chen & Bin Dai & Cunhua Ma & Panpan Li & Feng Yu, 2017. "Direct decomposition of CO 2 using self‐cooling dielectric barrier discharge plasma," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 721-730, August.
More about this item
Keywords
methane coupling; non-oxidative coupling; DBD plasma; microwave plasma; gliding arc plasma; pulsed plasma; acetylene; ethylene; carbon black; hydrogen;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6441-:d:1234029. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.