IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5815-d1210993.html
   My bibliography  Save this article

Pack-Level Modeling and Thermal Analysis of a Battery Thermal Management System with Phase Change Materials and Liquid Cooling

Author

Listed:
  • Jixian Sun

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Dan Dan

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Mingshan Wei

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Senlin Cai

    (China Automotive Engineering Research Institute Co., Ltd., Chongqing 401122, China)

  • Yihang Zhao

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Edward Wright

    (Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK)

Abstract

Electric vehicles are seen as the prevailing choice for eco-friendly transportation. In electric vehicles, the thermal management system of battery cells is of great significance, especially under high operating temperatures and continuous discharge conditions. To address this issue, a pack-level battery thermal management system with phase change materials and liquid cooling was discussed in this paper. A dynamic electro-thermal coupled model for cells, the enthalpy–porosity model for phase change materials, and the k - ε model for the coolant flow were used. Various parameters, such as ambient temperatures, discharge rates, components of phase change materials, inlet mass flow rates, and temperatures of the coolant were considered. The results indicated that a battery thermal management system with both phase change materials and liquid cooling is more effective than the one with only liquid cooling. The phase change material with a mass fraction of 10% expanded graphite in paraffin wax had a favorable performance for the battery thermal management system. Additionally, increasing the mass flow rate or decreasing the flow temperature of the coolant can reduce the maximum temperature of the battery pack. However, the former can limit the maximum temperature difference, while the latter will deteriorate the temperature uniformity. The present work may shed light on the design of battery thermal management systems in the electric vehicle industry.

Suggested Citation

  • Jixian Sun & Dan Dan & Mingshan Wei & Senlin Cai & Yihang Zhao & Edward Wright, 2023. "Pack-Level Modeling and Thermal Analysis of a Battery Thermal Management System with Phase Change Materials and Liquid Cooling," Energies, MDPI, vol. 16(15), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5815-:d:1210993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5815/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5815/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    2. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Dan Dan & Yihang Zhao & Mingshan Wei & Xuehui Wang, 2023. "Review of Thermal Management Technology for Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-38, June.
    4. Alexander C. Budiman & Brian Azzopardi & Sudirja & Muhammad A. P. Perdana & Sunarto Kaleg & Febriani S. Hadiastuti & Bagus A. Hasyim & Amin & Rina Ristiana & Aam Muharam & Abdul Hapid, 2023. "Phase Change Material Composite Battery Module for Thermal Protection of Electric Vehicles: An Experimental Observation," Energies, MDPI, vol. 16(9), pages 1-12, May.
    5. Zhao, Yihang & Dan, Dan & Zheng, Siyu & Wei, Mingshan & Xie, Yi, 2023. "A two-stage eco-cooling control strategy for electric vehicle thermal management system considering multi-source information fusion," Energy, Elsevier, vol. 267(C).
    6. Samimi, Fereshteh & Babapoor, Aziz & Azizi, Mohammadmehdi & Karimi, Gholamreza, 2016. "Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers," Energy, Elsevier, vol. 96(C), pages 355-371.
    7. Meng Li & Siyu Zheng & Mingshan Wei, 2023. "Flow Loss Analysis and Structural Optimization of Multiway Valves for Integrated Thermal Management Systems in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-22, June.
    8. Rao, Zhonghao & Wang, Qingchao & Huang, Congliang, 2016. "Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system," Applied Energy, Elsevier, vol. 164(C), pages 659-669.
    9. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Weixiong & Yang, Xiaoqing & Zhang, Guoqing & Ke, Xiufang & Wang, Ziyuan & Situ, Wenfu & Li, Xinxi & Zhang, Jiangyun, 2016. "An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack," Energy, Elsevier, vol. 113(C), pages 909-916.
    2. Ling, Ziye & Cao, Jiahao & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology," Applied Energy, Elsevier, vol. 228(C), pages 777-788.
    3. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    5. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    6. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    7. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Liu, Binghe & Yin, Sha & Xu, Jun, 2016. "Integrated computation model of lithium-ion battery subject to nail penetration," Applied Energy, Elsevier, vol. 183(C), pages 278-289.
    9. Akula, Rajesh & Balaji, C., 2022. "Thermal management of 18650 Li-ion battery using novel fins–PCM–EG composite heat sinks," Applied Energy, Elsevier, vol. 316(C).
    10. Zhao, Rui & Liu, Jie & Gu, Junjie, 2016. "Simulation and experimental study on lithium ion battery short circuit," Applied Energy, Elsevier, vol. 173(C), pages 29-39.
    11. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Kaur, Inderjot & Singh, Prashant, 2023. "Progress in minichannel-based thermal management of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    13. Lv, Youfu & Yang, Xiaoqing & Li, Xinxi & Zhang, Guoqing & Wang, Ziyuan & Yang, Chengzhao, 2016. "Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins," Applied Energy, Elsevier, vol. 178(C), pages 376-382.
    14. Situ, Wenfu & Zhang, Guoqing & Li, Xinxi & Yang, Xiaoqing & Wei, Chao & Rao, Mumin & Wang, Ziyuan & Wang, Cong & Wu, Weixiong, 2017. "A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates," Energy, Elsevier, vol. 141(C), pages 613-623.
    15. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    16. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    17. Liu, Yuanzhi & Zhang, Jie, 2019. "Design a J-type air-based battery thermal management system through surrogate-based optimization," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    19. Chen, Kai & Song, Mengxuan & Wei, Wei & Wang, Shuangfeng, 2018. "Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement," Energy, Elsevier, vol. 145(C), pages 603-613.
    20. Jilte, Ravindra & Afzal, Asif & Panchal, Satyam, 2021. "A novel battery thermal management system using nano-enhanced phase change materials," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5815-:d:1210993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.