IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v207y2023icp731-742.html
   My bibliography  Save this article

Development of a reliable simulation framework for techno-economic analyses on green hydrogen production from wind farms using alkaline electrolyzers

Author

Listed:
  • Superchi, Francesco
  • Papi, Francesco
  • Mannelli, Andrea
  • Balduzzi, Francesco
  • Ferro, Francesco Maria
  • Bianchini, Alessandro

Abstract

The present study investigates the feasibility of coupling the intermittent electric power generation from a wind farm with alkaline electrolyzers to produce green hydrogen. A physically accurate model of commercial electrolytic modules has been first developed, accounting for conversion efficiency drop due to modules’ cool down, effects of shutdowns due to the intermittence of wind power, and voltage degradation over the working time frame. The model has been calibrated on real modules, for which industrial data were available. Three commercial module sizes have been considered, i.e., 1, 2 and 4 MW. As a second step, the model has been coupled with historical power datasets coming from a real wind farm, characterized by a nominal installed power of 13.8 MW. Finally, the model was implemented within a sizing algorithm to find the best combination between the actual wind farm power output and the electrolyzer capacity to reach the lowest Levelized Cost Of Hydrogen (LCOH) possible. To this end, realistic data for the capital cost of the whole system (wind farm and electrolyzers) have been considered, based on industrial data and market reports, as well as maintenance costs including both periodic replacements of degraded components and periodic maintenance. Simulations showed that, if the right sizing of the two systems is made, competitive hydrogen production costs can be achieved even with current technologies. Bigger modules are less flexible but, by now, considerably cheaper than smaller ones. A future economy of scale in alkaline electrolyzers is then needed to foster the diffusion of the technology.

Suggested Citation

  • Superchi, Francesco & Papi, Francesco & Mannelli, Andrea & Balduzzi, Francesco & Ferro, Francesco Maria & Bianchini, Alessandro, 2023. "Development of a reliable simulation framework for techno-economic analyses on green hydrogen production from wind farms using alkaline electrolyzers," Renewable Energy, Elsevier, vol. 207(C), pages 731-742.
  • Handle: RePEc:eee:renene:v:207:y:2023:i:c:p:731-742
    DOI: 10.1016/j.renene.2023.03.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hector Beltran & Pablo Ayuso & Emilio Pérez, 2020. "Lifetime Expectancy of Li-Ion Batteries used for Residential Solar Storage," Energies, MDPI, vol. 13(3), pages 1-18, January.
    2. Denholm, Paul & Mai, Trieu, 2019. "Timescales of energy storage needed for reducing renewable energy curtailment," Renewable Energy, Elsevier, vol. 130(C), pages 388-399.
    3. Lin, Haiyang & Wu, Qiuwei & Chen, Xinyu & Yang, Xi & Guo, Xinyang & Lv, Jiajun & Lu, Tianguang & Song, Shaojie & McElroy, Michael, 2021. "Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China," Renewable Energy, Elsevier, vol. 173(C), pages 569-580.
    4. Rusu, Eugen & Onea, Florin, 2019. "A parallel evaluation of the wind and wave energy resources along the Latin American and European coastal environments," Renewable Energy, Elsevier, vol. 143(C), pages 1594-1607.
    5. Chade, Daniel & Miklis, Tomasz & Dvorak, David, 2015. "Feasibility study of wind-to-hydrogen system for Arctic remote locations – Grimsey island case study," Renewable Energy, Elsevier, vol. 76(C), pages 204-211.
    6. Nastasi, Benedetto & Mazzoni, Stefano & Groppi, Daniele & Romagnoli, Alessandro & Astiaso Garcia, Davide, 2021. "Optimized integration of Hydrogen technologies in Island energy systems," Renewable Energy, Elsevier, vol. 174(C), pages 850-864.
    7. Rezaei, Mostafa & Naghdi-Khozani, Nafiseh & Jafari, Niloofar, 2020. "Wind energy utilization for hydrogen production in an underdeveloped country: An economic investigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1044-1057.
    8. Salgi, Georges & Donslund, Bjarne & Alberg Østergaard, Poul, 2008. "Energy system analysis of utilizing hydrogen as an energy carrier for wind power in the transportation sector in Western Denmark," Utilities Policy, Elsevier, vol. 16(2), pages 99-106, June.
    9. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    10. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    11. Fan, Jing-Li & Yu, Pengwei & Li, Kai & Xu, Mao & Zhang, Xian, 2022. "A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China," Energy, Elsevier, vol. 242(C).
    12. Ahshan, Razzaqul & Onen, Ahmet & Al-Badi, Abdullah H., 2022. "Assessment of wind-to-hydrogen (Wind-H2) generation prospects in the Sultanate of Oman," Renewable Energy, Elsevier, vol. 200(C), pages 271-282.
    13. Benjamin Pakenham & Anna Ermakova & Ali Mehmanparast, 2021. "A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments," Energies, MDPI, vol. 14(7), pages 1-23, March.
    14. Andrea Mannelli & Francesco Papi & George Pechlivanoglou & Giovanni Ferrara & Alessandro Bianchini, 2021. "Discrete Wavelet Transform for the Real-Time Smoothing of Wind Turbine Power Using Li-Ion Batteries," Energies, MDPI, vol. 14(8), pages 1-32, April.
    15. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    16. Marino, C. & Nucara, A. & Panzera, M.F. & Pietrafesa, M. & Varano, V., 2019. "Energetic and economic analysis of a stand alone photovoltaic system with hydrogen storage," Renewable Energy, Elsevier, vol. 142(C), pages 316-329.
    17. Mazzeo, Domenico & Herdem, Münür Sacit & Matera, Nicoletta & Wen, John Z., 2022. "Green hydrogen production: Analysis for different single or combined large-scale photovoltaic and wind renewable systems," Renewable Energy, Elsevier, vol. 200(C), pages 360-378.
    18. Merit Bodner & Astrid Hofer & Viktor Hacker, 2015. "H 2 generation from alkaline electrolyzer," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(4), pages 365-381, July.
    19. Nezhad, M. Majidi & Neshat, M. & Groppi, D. & Marzialetti, P. & Heydari, A. & Sylaios, G. & Garcia, D. Astiaso, 2021. "A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island," Renewable Energy, Elsevier, vol. 172(C), pages 667-679.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Levelised cost of dynamic green hydrogen production: A case study for Australia's hydrogen hubs," Applied Energy, Elsevier, vol. 370(C).
    2. Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
    3. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2023. "Review of Hot Topics in the Sustainable Development of Energy, Water, and Environment Systems Conference in 2022," Energies, MDPI, vol. 16(23), pages 1-20, December.
    4. Yan, Yamin & Wang, Yumeng & Yan, Jie & Zhang, Haoran & Shang, Wenlong, 2024. "Wind electricity‑hydrogen-natural gas coupling: An integrated optimization approach for enhancing wind energy accommodation and carbon reduction," Applied Energy, Elsevier, vol. 369(C).
    5. Hojun Song & Yunji Kim & Heena Yang, 2023. "Design and Optimization of an Alkaline Electrolysis System for Small-Scale Hydropower Integration," Energies, MDPI, vol. 17(1), pages 1-13, December.
    6. Yingying Du & Hui Huang & Haibin Liu & Jingying Zhao & Qingzhou Yang, 2024. "Life Cycle Assessment of Abandonment of Onshore Wind Power for Hydrogen Production in China," Sustainability, MDPI, vol. 16(13), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
    2. Gallo, María Angélica & García Clúa, José Gabriel, 2023. "Sizing and analytical optimization of an alkaline water electrolyzer powered by a grid-assisted wind turbine to minimize grid power exchange," Renewable Energy, Elsevier, vol. 216(C).
    3. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    4. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Agbonaye, Osaru & Keatley, Patrick & Huang, Ye & Odiase, Friday O. & Hewitt, Neil, 2022. "Value of demand flexibility for managing wind energy constraint and curtailment," Renewable Energy, Elsevier, vol. 190(C), pages 487-500.
    6. Bhandari, Ramchandra & Subedi, Subodh, 2023. "Evaluation of surplus hydroelectricity potential in Nepal until 2040 and its use for hydrogen production via electrolysis," Renewable Energy, Elsevier, vol. 212(C), pages 403-414.
    7. Laugs, Gideon A.H. & Benders, René M.J. & Moll, Henri C., 2024. "Maximizing self-sufficiency and minimizing grid interaction: Combining electric and molecular energy storage for decentralized balancing of variable renewable energy in local energy systems," Renewable Energy, Elsevier, vol. 229(C).
    8. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    9. Zhang, Tao & Song, Lingjun & Yang, Fuyuan & Ouyang, Minggao, 2024. "Research on oxygen purity based on industrial scale alkaline water electrolysis system with 50Nm3 H2/h," Applied Energy, Elsevier, vol. 360(C).
    10. Zheng, Yi & You, Shi & Huang, Chunjun & Jin, Xin, 2023. "Model-based economic analysis of off-grid wind/hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    11. Yu, Binbin & Fan, Guangyao & Sun, Kai & Chen, Jing & Sun, Bo & Tian, Peigen, 2024. "Adaptive energy optimization strategy of island renewable power-to-hydrogen system with hybrid electrolyzers structure," Energy, Elsevier, vol. 301(C).
    12. Victor Soto & Claudia Ulloa & Ximena Garcia, 2021. "A CFD Design Approach for Industrial Size Tubular Reactors for SNG Production from Biogas (CO 2 Methanation)," Energies, MDPI, vol. 14(19), pages 1-25, September.
    13. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    14. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    15. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2024. "Optimal design of a renewable hydrogen production system by coordinating multiple PV arrays and multiple electrolyzers," Renewable Energy, Elsevier, vol. 225(C).
    16. Marek Jaszczur & Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Olushola Tomilayo Olapade & Szymon Wieteska, 2023. "Massive Green Hydrogen Production Using Solar and Wind Energy: Comparison between Europe and the Middle East," Energies, MDPI, vol. 16(14), pages 1-26, July.
    17. Ahshan, Razzaqul & Onen, Ahmet & Al-Badi, Abdullah H., 2022. "Assessment of wind-to-hydrogen (Wind-H2) generation prospects in the Sultanate of Oman," Renewable Energy, Elsevier, vol. 200(C), pages 271-282.
    18. Huo, Qunhai & Liu, Qiran & Deng, Huawei & Wang, Wenyong & Shi, Changli & Wei, Tongzhen, 2024. "Research on dual-layer optimization strategy of photovoltaic-storage-hydrogen system in coal chemical industry park," Renewable Energy, Elsevier, vol. 230(C).
    19. Sousa, Jorge & Lagarto, João & Fonseca, Miguel, 2024. "The role of storage and flexibility in the energy transition: Substitution effect of resources with application to the Portuguese electricity system," Renewable Energy, Elsevier, vol. 228(C).
    20. Sun, Chongzheng & Liu, Yuxiang & Yang, Xin & Li, Yuxing & Geng, Xiaoyi & Han, Hui & Lu, Xiao, 2024. "Experimental and numerical study on the offshore adaptability of new FLH2 floating hydrogen liquefaction production storage and offloading unit," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:207:y:2023:i:c:p:731-742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.