IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5273-d1190468.html
   My bibliography  Save this article

The Modeling of Fuel Auto-Ignition Delay and Its Verification Using Diesel Engines Fueled with Oils with Standard or Increased Cetane Numbers

Author

Listed:
  • Jerzy Cisek

    (Mechanical Department, Cracow University of Technology, 31-864 Cracow, Poland)

  • Szymon Leśniak

    (Mechanical Department, Cracow University of Technology, 31-864 Cracow, Poland)

Abstract

This article contains the results of mathematical modeling of the self-ignition delay ( τ c sum ) of a single droplet for various fuels, and the results of measurement verification ( τ c ) of this modeling in diesel engines. The result of modeling the τ c sum (as a function of the diameter and ambient temperature of the fuel droplet) revealed two physical and two chemical stages that had different values of the weighting factor ( WF i ) in relation to the total delay of self-ignition. It was also found that the WF i values of individual phases of the self-ignition delay differed for different fuels (conventional and alternative), and in the total value of τ c sum . The measured value of the self-ignition delay ( τ c ) was determined in tests using two diesel engines (older—up to EURO II and newer generation—from EURO IV). The percentage difference in the Δτ c sum value obtained from modeling two fuels with different cetane number values was compared with the percentage difference in the Δτ c value for the same fuels obtained during the engine measurements. Based on this analysis, it was found that the applied calculation model of the self-ignition delay for a single fuel droplet can be used for a comparative analysis of the suitability of different fuels in the real conditions of the cylinder of a diesel engine. This publication relates to the field of mechanical engineering.

Suggested Citation

  • Jerzy Cisek & Szymon Leśniak, 2023. "The Modeling of Fuel Auto-Ignition Delay and Its Verification Using Diesel Engines Fueled with Oils with Standard or Increased Cetane Numbers," Energies, MDPI, vol. 16(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5273-:d:1190468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jerzy Cisek & Szymon Leśniak & Andrzej Borowski & Włodzimierz Przybylski & Vitaliy Mokretskyy, 2022. "Visualisation and Thermovision of Fuel Combustion Affecting Heat Release to Reduce NO x and PM Diesel Engine Emissions," Energies, MDPI, vol. 15(13), pages 1-32, July.
    2. Jerzy Cisek & Szymon Lesniak & Winicjusz Stanik & Włodzimierz Przybylski, 2021. "The Synergy of Two Biofuel Additives on Combustion Process to Simultaneously Reduce NOx and PM Emissions," Energies, MDPI, vol. 14(10), pages 1-31, May.
    3. Mat Yasin, M.H. & Yusaf, Talal & Mamat, R. & Fitri Yusop, A., 2014. "Characterization of a diesel engine operating with a small proportion of methanol as a fuel additive in biodiesel blend," Applied Energy, Elsevier, vol. 114(C), pages 865-873.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    2. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    3. Feng, Hongqing & Chen, Xiaofan & Sun, Liangliang & Ma, Ruixiu & Zhang, Xiuxia & Zhu, Lijun & Yang, Chaohe, 2023. "The effect of methanol/diesel fuel blends with co-solvent on diesel engine combustion based on experiment and exergy analysis," Energy, Elsevier, vol. 282(C).
    4. Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.
    5. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    6. Mourad, M. & Mahmoud, K., 2019. "Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends," Renewable Energy, Elsevier, vol. 143(C), pages 762-771.
    7. Wang, Xin & Ge, Yunshan & Zhang, Chuanzhen & Tan, Jianwei & Hao, Lijun & Liu, Jia & Gong, Huiming, 2016. "Effects of engine misfire on regulated, unregulated emissions from a methanol-fueled vehicle and its ozone forming potential," Applied Energy, Elsevier, vol. 177(C), pages 187-195.
    8. Jerzy Cisek & Szymon Leśniak & Andrzej Borowski & Włodzimierz Przybylski & Vitaliy Mokretskyy, 2022. "Visualisation and Thermovision of Fuel Combustion Affecting Heat Release to Reduce NO x and PM Diesel Engine Emissions," Energies, MDPI, vol. 15(13), pages 1-32, July.
    9. Al-lwayzy, Saddam H. & Yusaf, Talal, 2017. "Diesel engine performance and exhaust gas emissions using Microalgae Chlorella protothecoides biodiesel," Renewable Energy, Elsevier, vol. 101(C), pages 690-701.
    10. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    11. Ma, Yinjie & Huang, Ronghua & Fu, Jianqin & Huang, Sheng & Liu, Jingping, 2018. "Development of a diesel/biodiesel/alcohol (up to n-pentanol) combined mechanism based on reaction pathways analysis methodology," Applied Energy, Elsevier, vol. 225(C), pages 835-847.
    12. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    13. Teo, Siow Hwa & Islam, Aminul & Yusaf, Talal & Taufiq-Yap, Yun Hin, 2014. "Transesterification of Nannochloropsis oculata microalga's oil to biodiesel using calcium methoxide catalyst," Energy, Elsevier, vol. 78(C), pages 63-71.
    14. Zongyu Yue & Haifeng Liu, 2023. "Advanced Research on Internal Combustion Engines and Engine Fuels," Energies, MDPI, vol. 16(16), pages 1-8, August.
    15. Shah, Pinkesh R. & Gaitonde, U.N. & Ganesh, Anuradda, 2018. "Influence of soy-lecithin as bio-additive with straight vegetable oil on CI engine characteristics," Renewable Energy, Elsevier, vol. 115(C), pages 685-696.
    16. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    17. Sivakumar, Muthusamy & Shanmuga Sundaram, Nallathambi & Ramesh kumar, Ramasamy & Syed Thasthagir, Mohamed Hussain, 2018. "Effect of aluminium oxide nanoparticles blended pongamia methyl ester on performance, combustion and emission characteristics of diesel engine," Renewable Energy, Elsevier, vol. 116(PA), pages 518-526.
    18. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    19. Ahmad Fitri Yusop & Rizalman Mamat & Talal Yusaf & Gholamhassan Najafi & Mohd Hafizil Mat Yasin & Akasyah Mohd Khathri, 2018. "Analysis of Particulate Matter (PM) Emissions in Diesel Engines Using Palm Oil Biodiesel Blended with Diesel Fuel," Energies, MDPI, vol. 11(5), pages 1-25, April.
    20. Y.H. Teoh & K.H. Yu & H.G. How & H.-T. Nguyen, 2019. "Experimental Investigation of Performance, Emission and Combustion Characteristics of a Common-Rail Diesel Engine Fuelled with Bioethanol as a Fuel Additive in Coconut Oil Biodiesel Blends," Energies, MDPI, vol. 12(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5273-:d:1190468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.