IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4917-d1178103.html
   My bibliography  Save this article

Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis

Author

Listed:
  • Sogand Musivand

    (Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Maria Paola Bracciale

    (Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Martina Damizia

    (Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Paolo De Filippis

    (Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Benedetta de Caprariis

    (Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

Abstract

Chemical recycling is considered one of the most sustainable solutions to limit the environmental issues related to plastic waste pollution, whereby plastic is converted into more valuable compounds when mechanical recycling is not feasible. Among the most critical fast-growing components of municipal solid waste, polystyrene represents 1/3 of the filling materials in landfills. In this work, the chemical recycling of polystyrene via two main thermochemical processes is investigated: pyrolysis and hydrothermal liquefaction (HTL). The influence of temperature (HTL: 300–360 °C and pyrolysis: 400–600 °C) and reaction time (HTL: 1–4 h; pyrolysis: 30 min) on the products obtained was studied. The obtained liquid and solid products were analyzed by using gas chromatography-mass spectrometry (GC-MS), an elemental analysis (EA), Fourier-transform infrared spectroscopy (FT-IR) and a thermogravimetric analysis (TGA). During HTL, a temperature of 360 °C and reaction time of 4 h were needed to completely decompose the polystyrene into mainly oil (83%) and water-soluble compounds (10%). The former was mainly composed of aromatics while the water phase was mainly composed of aromatics and oxygenated compounds (benzaldehyde and acetophenone). The pyrolysis led to the formation of 45% gas and 55% oil at 500 °C, and the oil was 40% styrene. Pyrolysis was thus more selective towards the recovery of the styrene monomer while the HTL can be an effective process to produce renewable aromatics.

Suggested Citation

  • Sogand Musivand & Maria Paola Bracciale & Martina Damizia & Paolo De Filippis & Benedetta de Caprariis, 2023. "Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis," Energies, MDPI, vol. 16(13), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4917-:d:1178103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seshasayee, Mahadevan Subramanya & Savage, Phillip E., 2020. "Oil from plastic via hydrothermal liquefaction: Production and characterization," Applied Energy, Elsevier, vol. 278(C).
    2. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2020. "Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes," Applied Energy, Elsevier, vol. 259(C).
    3. Williams, Paul T. & Slaney, Edward, 2007. "Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures," Resources, Conservation & Recycling, Elsevier, vol. 51(4), pages 754-769.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirkarimi, S.M.R. & Bensaid, S. & Chiaramonti, D., 2022. "Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review," Applied Energy, Elsevier, vol. 327(C).
    2. Ana B. Cuevas & David E. Leiva-Candia & M. P. Dorado, 2024. "An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy," Energies, MDPI, vol. 17(12), pages 1-32, June.
    3. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    4. Fiyinfoluwa Joan Medaiyese & Hamid Reza Nasriani & Leila Khajenoori & Khalid Khan & Ali Badiei, 2024. "From Waste to Energy: Enhancing Fuel and Hydrogen Production through Pyrolysis and In-Line Reforming of Plastic Wastes," Sustainability, MDPI, vol. 16(12), pages 1-31, June.
    5. Zhang, Shiyu & Bie, Xuan & Qian, Zheng & Wu, Mengna & Li, Kaile & Li, Qinghai & Zhang, Yanguo & Zhou, Hui, 2024. "Synergistic interactions between cellulose and plastics (PET, HDPE, and PS) during CO2 gasification-catalytic reforming on Ni/CeO2 nanorod catalyst," Applied Energy, Elsevier, vol. 361(C).
    6. Jeong, Yong-Seong & Kim, Jong-Woo & Seo, Myung-Won & Mun, Tae-Young & Kim, Joo-Sik, 2021. "Characteristics of two-stage air gasification of polystyrene with active carbon as a tar removal agent," Energy, Elsevier, vol. 219(C).
    7. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    8. Faisal Abnisa, 2023. "Enhanced Liquid Fuel Production from Pyrolysis of Plastic Waste Mixtures Using a Natural Mineral Catalyst," Energies, MDPI, vol. 16(3), pages 1-16, January.
    9. Gluth, A. & Xu, Z. & Fifield, L.S. & Yang, B., 2022. "Advancing biological processing for valorization of plastic wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    10. Yu, Jie & Lin, Xiaoyu & Huang, Jingchen & Ye, Wangfang & Lan, Qian & Du, Shaorong & Liu, Zilin & Wu, Yijing & Zhao, Zeyuan & Xu, Xin & Yang, Guifang & Changotra, Rahil & Hu, Yulin & Wu, Yulong & Yan, , 2023. "Recent advances in the production processes of hydrothermal liquefaction biocrude and aid-in investigation techniques," Renewable Energy, Elsevier, vol. 218(C).
    11. Paul Palmay & Cesar Puente & Carla Haro & Joan Carles Bruno & Alberto Coronas, 2023. "Bio Oil as Cutter Stock in Fuel Oil Blends for Industrial Applications," Energies, MDPI, vol. 16(3), pages 1-11, February.
    12. Li, Jie & Yu, Di & Pan, Lanjia & Xu, Xinhai & Wang, Xiaonan & Wang, Yin, 2023. "Recent advances in plastic waste pyrolysis for liquid fuel production: Critical factors and machine learning applications," Applied Energy, Elsevier, vol. 346(C).
    13. Yao, Dingding & Wang, Chi-Hwa, 2020. "Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts," Applied Energy, Elsevier, vol. 265(C).
    14. Augusto Fernando de Freitas Costa & Caio Campos Ferreira & Simone Patrícia Aranha da Paz & Marcelo Costa Santos & Luiz Gabriel Santos Moreira & Neyson Martins Mendonça & Fernanda Paula da Costa Assunç, 2023. "Catalytic Upgrading of Plastic Waste of Electric and Electronic Equipment (WEEE) Pyrolysis Vapors over Si–Al Ash Pellets in a Two-Stage Reactor," Energies, MDPI, vol. 16(1), pages 1-32, January.
    15. Suriapparao, Dadi V. & Hemanth Kumar, Tanneru & Reddy, B. Rajasekhar & Yerrayya, Attada & Srinivas, B. Abhinaya & Sivakumar, Pandian & Prakash, S. Reddy & Sankar Rao, Chinta & Sridevi, Veluru & Desing, 2022. "Role of ZSM5 catalyst and char susceptor on the synthesis of chemicals and hydrocarbons from microwave-assisted in-situ catalytic co-pyrolysis of algae and plastic wastes," Renewable Energy, Elsevier, vol. 181(C), pages 990-999.
    16. Li, Dan & Lei, Shijun & Wang, Ping & Zhong, Lei & Ma, Wenchao & Chen, Guanyi, 2021. "Study on the pyrolysis behaviors of mixed waste plastics," Renewable Energy, Elsevier, vol. 173(C), pages 662-674.
    17. Silvan Feuerbach & Saqib Sohail Toor & Paula A. Costa & Filipe Paradela & Paula A.A.S. Marques & Daniele Castello, 2024. "Hydrothermal Co-Liquefaction of Food and Plastic Waste for Biocrude Production," Energies, MDPI, vol. 17(9), pages 1-17, April.
    18. Yin Ting Chu & Jianzhao Zhou & Yuan Wang & Yue Liu & Jingzheng Ren, 2023. "Current State, Development and Future Directions of Medical Waste Valorization," Energies, MDPI, vol. 16(3), pages 1-28, January.
    19. Farihahusnah Hussin & Mohamed Kheireddine Aroua & Mohd Azlan Kassim & Umi Fazara Md. Ali, 2021. "Transforming Plastic Waste into Porous Carbon for Capturing Carbon Dioxide: A Review," Energies, MDPI, vol. 14(24), pages 1-22, December.
    20. Venturelli, Matteo & Falletta, Ermelinda & Pirola, Carlo & Ferrari, Federico & Milani, Massimo & Montorsi, Luca, 2022. "Experimental evaluation of the pyrolysis of plastic residues and waste tires," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4917-:d:1178103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.