IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123012636.html
   My bibliography  Save this article

Recent advances in the production processes of hydrothermal liquefaction biocrude and aid-in investigation techniques

Author

Listed:
  • Yu, Jie
  • Lin, Xiaoyu
  • Huang, Jingchen
  • Ye, Wangfang
  • Lan, Qian
  • Du, Shaorong
  • Liu, Zilin
  • Wu, Yijing
  • Zhao, Zeyuan
  • Xu, Xin
  • Yang, Guifang
  • Changotra, Rahil
  • Hu, Yulin
  • Wu, Yulong
  • Yan, Chenyu
  • Yang, Jie
  • He, Quan (Sophia)

Abstract

This review provides an overview of recent advances in hydrothermal liquefaction (HTL) biocrude production processes using plastics as feedstock, seawater as the processing medium, and microwave irradiation as a process intensification method. Additionally, the review examines the application of aid-in investigation tools such as kinetics, machine learning, and feasibility analysis to HTL research. All these aspects have been underexplored in review literature compared to process optimization, biocrude upgrading, continuous HTL, and aqueous phase reutilization. The potential of HTL as an effective method for the depolymerization of plastics is initially evaluated. The ease of plastic depolymerization follows the order of polycarbonate (300 °C) > polystyrene (350 °C) > polyethylene = polypropylene (420 °C) > polyethylene terephthalate (>450 °C). Both synergism and antagonism are observed for co-HTL of plastics with biomass, ranging from −48.3% to 79.2%. Using seawater as an alternative HTL processing medium shows promising potential, while the effect of sea salts on biocrude yield/quality is still controversial especially when carbohydrate-rich feedstocks are utilized, necessitating more comprehensive examination. Microwave irradiation has been shown to increase biocrude yield from lipid, produce comparable yields from protein and lignin, and decrease yield from carbohydrate compared to conventional heating. As for the aid-in investigation tools, limited efforts have been made to apply kinetic modeling to the HTL of plastics, which could be particularly useful when synergism or antagonism is observed during co-HTL of plastics and biomass. Machine learning-enabled predictions of product yield and quality have been found to be more accurate than traditional mathematical models. Future research could focus on using machine learning algorithms to elucidate product formation mechanisms. The techno-economic and life cycle assessment reveal that the commercialization of HTL technology remains a distant prospect, further improvements in product yield, quality, and process energy efficiency are essential. Overall, this review offers augmented insights into HTL technology and facilitates the identification of novel opportunities, which is of value to promote the biocrude production.

Suggested Citation

  • Yu, Jie & Lin, Xiaoyu & Huang, Jingchen & Ye, Wangfang & Lan, Qian & Du, Shaorong & Liu, Zilin & Wu, Yijing & Zhao, Zeyuan & Xu, Xin & Yang, Guifang & Changotra, Rahil & Hu, Yulin & Wu, Yulong & Yan, , 2023. "Recent advances in the production processes of hydrothermal liquefaction biocrude and aid-in investigation techniques," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012636
    DOI: 10.1016/j.renene.2023.119348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Yunhua & Biddy, Mary J. & Jones, Susanne B. & Elliott, Douglas C. & Schmidt, Andrew J., 2014. "Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading," Applied Energy, Elsevier, vol. 129(C), pages 384-394.
    2. Mei Yin Ong & Saifuddin Nomanbhay, 2022. "Optimization Study on Microwave-Assisted Hydrothermal Liquefaction of Malaysian Macroalgae Chaetomorpha sp. for Phenolic-Rich Bio-Oil Production," Energies, MDPI, vol. 15(11), pages 1-22, May.
    3. Nazari, Laleh & Yuan, Zhongshun & Ray, Madhumita B. & Xu, Chunbao (Charles), 2017. "Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: Optimization of reaction parameters using response surface methodology," Applied Energy, Elsevier, vol. 203(C), pages 1-10.
    4. Chen, Peter H. & Quinn, Jason C., 2021. "Microalgae to biofuels through hydrothermal liquefaction: Open-source techno-economic analysis and life cycle assessment," Applied Energy, Elsevier, vol. 289(C).
    5. Yang, Jie & He, Quan (Sophia) & Niu, Haibo & Corscadden, Kenneth & Astatkie, Tess, 2018. "Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration," Applied Energy, Elsevier, vol. 228(C), pages 1618-1628.
    6. Seshasayee, Mahadevan Subramanya & Savage, Phillip E., 2020. "Oil from plastic via hydrothermal liquefaction: Production and characterization," Applied Energy, Elsevier, vol. 278(C).
    7. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    8. Qian, Lili & Wang, Shuzhong & Savage, Phillip E., 2020. "Fast and isothermal hydrothermal liquefaction of sludge at different severities: Reaction products, pathways, and kinetics," Applied Energy, Elsevier, vol. 260(C).
    9. SundarRajan, P. & Gopinath, K.P. & Arun, J. & GracePavithra, K. & Adithya Joseph, A. & Manasa, S., 2021. "Insights into valuing the aqueous phase derived from hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Tzanetis, Konstantinos F. & Posada, John A. & Ramirez, Andrea, 2017. "Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance," Renewable Energy, Elsevier, vol. 113(C), pages 1388-1398.
    11. Yang, Jie & He, Quan (Sophia) & Corscadden, Kenneth & Niu, Haibo & Lin, Jianan & Astatkie, Tess, 2019. "Advanced models for the prediction of product yield in hydrothermal liquefaction via a mixture design of biomass model components coupled with process variables," Applied Energy, Elsevier, vol. 233, pages 906-915.
    12. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    13. Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2016. "Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics," Energy, Elsevier, vol. 100(C), pages 137-144.
    14. Nie, Yuhao & Bi, Xiaotao T., 2018. "Techno-economic assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia," Energy, Elsevier, vol. 153(C), pages 464-475.
    15. Shuping, Zou & Yulong, Wu & Mingde, Yang & Kaleem, Imdad & Chun, Li & Tong, Junmao, 2010. "Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake," Energy, Elsevier, vol. 35(12), pages 5406-5411.
    16. Liu, Junhai & Zhuang, Yingbin & Li, Yan & Chen, Limei & Guo, Jingxue & Li, Demao & Ye, Naihao, 2013. "Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology," Energy, Elsevier, vol. 60(C), pages 69-76.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    3. Ong, Benjamin H.Y. & Walmsley, Timothy G. & Atkins, Martin J. & Varbanov, Petar S. & Walmsley, Michael R.W., 2019. "A heat- and mass-integrated design of hydrothermal liquefaction process co-located with a Kraft pulp mill," Energy, Elsevier, vol. 189(C).
    4. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    5. Li, Qingyin & Yuan, Xiangzhou & Hu, Xun & Meers, Erik & Ong, Hwai Chyuan & Chen, Wei-Hsin & Duan, Peigao & Zhang, Shicheng & Lee, Ki Bong & Ok, Yong Sik, 2022. "Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Yan, Shuo & Xia, Dehong & Zhang, Xinru & Liu, Xiangjun, 2022. "Synergistic mechanism of enhanced biocrude production during hydrothermal co-liquefaction of biomass model components: A molecular dynamics simulation," Energy, Elsevier, vol. 255(C).
    7. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Jie Yang & Hao Chen & Haibo Niu & Josiah McNutt & Quan He, 2021. "A Comparative Study on Thermochemical Valorization Routes for Spent Coffee Grounds," Energies, MDPI, vol. 14(13), pages 1-10, June.
    9. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    10. Khoshnevisan, Benyamin & Duan, Na & Tsapekos, Panagiotis & Awasthi, Mukesh Kumar & Liu, Zhidan & Mohammadi, Ali & Angelidaki, Irini & Tsang, Daniel CW. & Zhang, Zengqiang & Pan, Junting & Ma, Lin & Ag, 2021. "A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Kandasamy, Sabariswaran & Zhang, Bo & He, Zhixia & Chen, Haitao & Feng, Huan & Wang, Qian & Wang, Bin & Ashokkumar, Veeramuthu & Siva, Subramanian & Bhuvanendran, Narayanamoorthy & Krishnamoorthi, M., 2020. "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, Elsevier, vol. 190(C).
    12. Alex R. Maag & Alex D. Paulsen & Ted J. Amundsen & Paul E. Yelvington & Geoffrey A. Tompsett & Michael T. Timko, 2018. "Catalytic Hydrothermal Liquefaction of Food Waste Using CeZrO x," Energies, MDPI, vol. 11(3), pages 1-14, March.
    13. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Alherbawi, Mohammad & Parthasarathy, Prakash & Al-Ansari, Tareq & Mackey, Hamish R. & McKay, Gordon, 2021. "Potential of drop-in biofuel production from camel manure by hydrothermal liquefaction and biocrude upgrading: A Qatar case study," Energy, Elsevier, vol. 232(C).
    15. Yuan, Zhilong & Jia, Guangchao & Cui, Xin & Song, Xueping & Wang, Cuiping & Zhao, Peitao & Ragauskas, Art J., 2022. "Effects of temperature and time on supercritical methanol Co-Liquefaction of rice straw and linear low-density polyethylene wastes," Energy, Elsevier, vol. 245(C).
    16. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    17. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    19. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    20. Wang, Haoqi & Zhang, Siduo & Bi, Xiaotao & Clift, Roland, 2020. "Greenhouse gas emission reduction potential and cost of bioenergy in British Columbia, Canada," Energy Policy, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.