IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4560-d1165705.html
   My bibliography  Save this article

Reconfiguration of Distribution Networks with Simultaneous Allocation of Distributed Generation Using the Whale Optimization Algorithm

Author

Listed:
  • Elham Mahdavi

    (Department of Electrical Engineering, São Paulo State University, Brasil Avenue, Ilha Solteira 15385-000, Brazil)

  • Seifollah Asadpour

    (Department of Electrical Engineering, São Paulo State University, Brasil Avenue, Ilha Solteira 15385-000, Brazil)

  • Leonardo H. Macedo

    (Department of Engineering, São Paulo State University, Barrageiros Avenue, Rosana 19274-000, Brazil)

  • Rubén Romero

    (Department of Electrical Engineering, São Paulo State University, Brasil Avenue, Ilha Solteira 15385-000, Brazil)

Abstract

The economic interest in power loss minimization and regulatory requirements regarding voltage levels in distribution systems are considered. In this paper, a computational technique to assist in the optimization of the power losses and voltage characteristic in the steady state through distribution network reconfiguration and the location and size of the distributed generators is addressed. The whale optimization algorithm (WOA) is chosen to perform this task since it can explore the sizeable combinatorial search space of the problem, which is also nonlinear and nonconvex. The purpose of this study is to mitigate power losses; voltage ranges are borne in mind as the problem restrictions. The proposals for solving the issue are evaluated using a specialized power flow algorithm. The algorithm is implemented in MATLAB and the 33-bus and 69-bus grids are employed to assess the performance of the approach. The results indicate that the WOA method outperforms regarding power loss reduction and voltage characteristic improvement in the concurrent integration of distribution network reconfiguration and distributed generators compared with the four metaheuristics shown in the results section.

Suggested Citation

  • Elham Mahdavi & Seifollah Asadpour & Leonardo H. Macedo & Rubén Romero, 2023. "Reconfiguration of Distribution Networks with Simultaneous Allocation of Distributed Generation Using the Whale Optimization Algorithm," Energies, MDPI, vol. 16(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4560-:d:1165705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saman Nikkhah & Arman Alahyari & Adib Allahham & Khaled Alawasa, 2023. "Optimal Integration of Hybrid Energy Systems: A Security-Constrained Network Topology Reconfiguration," Energies, MDPI, vol. 16(6), pages 1-19, March.
    2. Guillermo Alonso & Ricardo F. Alonso & Antonio Carlos Zambroni Zambroni De Souza & Walmir Freitas, 2022. "Enhanced Artificial Immune Systems and Fuzzy Logic for Active Distribution Systems Reconfiguration," Energies, MDPI, vol. 15(24), pages 1-18, December.
    3. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).
    4. Dhivya Swaminathan & Arul Rajagopalan & Oscar Danilo Montoya & Savitha Arul & Luis Fernando Grisales-Noreña, 2023. "Distribution Network Reconfiguration Based on Hybrid Golden Flower Algorithm for Smart Cities Evolution," Energies, MDPI, vol. 16(5), pages 1-24, March.
    5. Ezequiel C. Pereira & Carlos H. N. R. Barbosa & João A. Vasconcelos, 2023. "Distribution Network Reconfiguration Using Iterative Branch Exchange and Clustering Technique," Energies, MDPI, vol. 16(5), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matheus Diniz Gonçalves-Leite & Edgar Manuel Carreño-Franco & Jesús M. López-Lezama, 2023. "Impact of Distributed Generation on the Effectiveness of Electric Distribution System Reconfiguration," Energies, MDPI, vol. 16(17), pages 1-20, August.
    2. Samson Oladayo Ayanlade & Funso Kehinde Ariyo & Abdulrasaq Jimoh & Kayode Timothy Akindeji & Adeleye Oluwaseye Adetunji & Emmanuel Idowu Ogunwole & Dolapo Eniola Owolabi, 2023. "Optimal Allocation of Photovoltaic Distributed Generations in Radial Distribution Networks," Sustainability, MDPI, vol. 15(18), pages 1-26, September.
    3. Nastaran Gholizadeh & Petr Musilek, 2024. "A Generalized Deep Reinforcement Learning Model for Distribution Network Reconfiguration with Power Flow-Based Action-Space Sampling," Energies, MDPI, vol. 17(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Zhu & Saber Arabi Nowdeh & Aspassia Daskalopulu, 2023. "An Improved Human-Inspired Algorithm for Distribution Network Stochastic Reconfiguration Using a Multi-Objective Intelligent Framework and Unscented Transformation," Mathematics, MDPI, vol. 11(17), pages 1-23, August.
    2. Emad A. Mohamed & Mokhtar Aly & Masayuki Watanabe, 2022. "New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids," Mathematics, MDPI, vol. 10(16), pages 1-33, August.
    3. Elseify, Mohamed A. & Hashim, Fatma A. & Hussien, Abdelazim G. & Kamel, Salah, 2024. "Single and multi-objectives based on an improved golden jackal optimization algorithm for simultaneous integration of multiple capacitors and multi-type DGs in distribution systems," Applied Energy, Elsevier, vol. 353(PA).
    4. Xin Yan & Qian Zhang, 2023. "Research on Combination of Distributed Generation Placement and Dynamic Distribution Network Reconfiguration Based on MIBWOA," Sustainability, MDPI, vol. 15(12), pages 1-34, June.
    5. Sankar, Matta Mani & Chatterjee, Kalyan, 2023. "A posteriori multiobjective approach for techno-economic allocation of PV and BES units in a distribution system hosting PHEVs," Applied Energy, Elsevier, vol. 351(C).
    6. Santiago Bustamante-Mesa & Jorge W. Gonzalez-Sanchez & Sergio D. Saldarriaga-Zuluaga & Jesús M. López-Lezama & Nicolás Muñoz-Galeano, 2024. "Optimal Estimation of Under-Frequency Load Shedding Scheme Parameters by Considering Virtual Inertia Injection," Energies, MDPI, vol. 17(2), pages 1-20, January.
    7. Biao Li & Tao Wang & Chunxiao Li & Zhen Dong & Hua Yang & Yi Sun & Pengfei Wang, 2022. "A Strategy for Determining the Decommissioning Life of Energy Equipment Based on Economic Factors and Operational Stability," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    8. Ezequiel C. Pereira & Carlos H. N. R. Barbosa & João A. Vasconcelos, 2023. "Distribution Network Reconfiguration Using Iterative Branch Exchange and Clustering Technique," Energies, MDPI, vol. 16(5), pages 1-20, March.
    9. Abid, Md. Shadman & Ahshan, Razzaqul & Al Abri, Rashid & Al-Badi, Abdullah & Albadi, Mohammed, 2024. "Techno-economic and environmental assessment of renewable energy sources, virtual synchronous generators, and electric vehicle charging stations in microgrids," Applied Energy, Elsevier, vol. 353(PA).
    10. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2023. "Optimal Integration of Distribution Network Reconfiguration and Conductor Selection in Power Distribution Systems via MILP," Energies, MDPI, vol. 16(19), pages 1-25, October.
    11. Nastaran Gholizadeh & Petr Musilek, 2024. "A Generalized Deep Reinforcement Learning Model for Distribution Network Reconfiguration with Power Flow-Based Action-Space Sampling," Energies, MDPI, vol. 17(20), pages 1-18, October.
    12. Yaarob Al-Nidawi & Haider Tarish Haider & Dhiaa Halboot Muhsen & Ghadeer Ghazi Shayea, 2024. "Multi-User Optimal Load Scheduling of Different Objectives Combined with Multi-Criteria Decision Making for Smart Grid," Future Internet, MDPI, vol. 16(10), pages 1-23, September.
    13. Sami M. Alshareef & Ahmed Fathy, 2023. "Efficient Red Kite Optimization Algorithm for Integrating the Renewable Sources and Electric Vehicle Fast Charging Stations in Radial Distribution Networks," Mathematics, MDPI, vol. 11(15), pages 1-30, July.
    14. Mohammed Alqahtani & Ponnusamy Marimuthu & Veerasamy Moorthy & B. Pangedaiah & Ch. Rami Reddy & M. Kiran Kumar & Muhammad Khalid, 2023. "Investigation and Minimization of Power Loss in Radial Distribution Network Using Gray Wolf Optimization," Energies, MDPI, vol. 16(12), pages 1-15, June.
    15. Abid, Md. Shadman & Apon, Hasan Jamil & Hossain, Salman & Ahmed, Ashik & Ahshan, Razzaqul & Lipu, M.S. Hossain, 2024. "A novel multi-objective optimization based multi-agent deep reinforcement learning approach for microgrid resources planning," Applied Energy, Elsevier, vol. 353(PA).
    16. Wei-Chen Lin & Chao-Hsien Hsiao & Wei-Tzer Huang & Kai-Chao Yao & Yih-Der Lee & Jheng-Lun Jian & Yuan Hsieh, 2024. "Network Reconfiguration Framework for CO 2 Emission Reduction and Line Loss Minimization in Distribution Networks Using Swarm Optimization Algorithms," Sustainability, MDPI, vol. 16(4), pages 1-17, February.
    17. Matheus Diniz Gonçalves-Leite & Edgar Manuel Carreño-Franco & Jesús M. López-Lezama, 2023. "Impact of Distributed Generation on the Effectiveness of Electric Distribution System Reconfiguration," Energies, MDPI, vol. 16(17), pages 1-20, August.
    18. Tie Chen & Pingping Yang & Hongxin Li & Jiaqi Gao & Yimin Yuan, 2024. "Two-Stage Optimization Model Based on Neo4j-Dueling Deep Q Network," Energies, MDPI, vol. 17(19), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4560-:d:1165705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.