IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p428-d1570707.html
   My bibliography  Save this article

Integration of a Heterogeneous Battery Energy Storage System into the Puducherry Smart Grid with Time-Varying Loads

Author

Listed:
  • M A Sasi Bhushan

    (Department of EEE, Puducherry Technological University, Puducherry 605014, Puducherry, India)

  • M. Sudhakaran

    (Department of EEE, Puducherry Technological University, Puducherry 605014, Puducherry, India)

  • Sattianadan Dasarathan

    (Department of EEE, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamilnadu, India)

  • Mariappane E

    (Department of ECE, Christ Institute of Technology, Villianur Commune, Puducherry 605502, Puducherry, India)

Abstract

A peak shaving approach in selected industrial loads helps minimize power usage during high demand hours, decreasing total energy expenses while improving grid stability. A battery energy storage system (BESS) can reduce peak electricity demand in distribution networks. Quasi-dynamic load flow analysis (QLFA) accurately assesses the maximum loading conditions in distribution networks by considering factors such as load profiles, system topology, and network constraints. Achieving maximum peak shaving requires optimizing battery charging and discharging cycles based on real-time energy generation and consumption patterns. Seamless integration of battery storage with solar photovoltaic (PV) systems and industrial processes is essential for effective peak shaving strategies. This paper proposes a model predictive control (MPC) scheme that can effectively perform peak shaving of the total industrial load. Adopting an MPC-based algorithm design framework enables the development of an effective control strategy for complex systems. The proposed MPC methodology was implemented and tested on the Indian Utility 29 Node Distribution Network (IU29NDN) using the DIgSILENT Power Factory environment. Additionally, the analysis encompasses technical and economic results derived from a simulated storage operation and, taking Puducherry State Electricity Department tariff details, provides significant insights into the application of this method.

Suggested Citation

  • M A Sasi Bhushan & M. Sudhakaran & Sattianadan Dasarathan & Mariappane E, 2025. "Integration of a Heterogeneous Battery Energy Storage System into the Puducherry Smart Grid with Time-Varying Loads," Energies, MDPI, vol. 18(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:428-:d:1570707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Ali Zdiri & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Abdulaziz Almalaq & Fatma Ben Salem & Hsan Hadj Abdallah & Ahmed Toumi, 2022. "Design and Analysis of Sliding-Mode Artificial Neural Network Control Strategy for Hybrid PV-Battery-Supercapacitor System," Energies, MDPI, vol. 15(11), pages 1-20, June.
    2. Jiang, Xin & Jin, Yang & Zheng, Xueyuan & Hu, Guobao & Zeng, Qingshan, 2020. "Optimal configuration of grid-side battery energy storage system under power marketization," Applied Energy, Elsevier, vol. 272(C).
    3. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2015. "Smart households: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving," Applied Energy, Elsevier, vol. 147(C), pages 246-257.
    4. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    5. Elham Mahdavi & Seifollah Asadpour & Leonardo H. Macedo & Rubén Romero, 2023. "Reconfiguration of Distribution Networks with Simultaneous Allocation of Distributed Generation Using the Whale Optimization Algorithm," Energies, MDPI, vol. 16(12), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziad Ragab & Ehsan Pashajavid & Sumedha Rajakaruna, 2024. "Optimal Sizing and Economic Analysis of Community Battery Systems Considering Sensitivity and Uncertainty Factors," Energies, MDPI, vol. 17(18), pages 1-20, September.
    2. Sardi, Junainah & Mithulananthan, N. & Hung, Duong Quoc, 2017. "Strategic allocation of community energy storage in a residential system with rooftop PV units," Applied Energy, Elsevier, vol. 206(C), pages 159-171.
    3. Yurter, Gulin & Nadar, Emre & Kocaman, Ayse Selin, 2024. "The impact of pumped hydro energy storage configurations on investment planning of hybrid systems with renewables," Renewable Energy, Elsevier, vol. 222(C).
    4. Liu, Shan & Yan, Jie & Yan, Yamin & Zhang, Haoran & Zhang, Jing & Liu, Yongqian & Han, Shuang, 2024. "Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate," Applied Energy, Elsevier, vol. 357(C).
    5. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    6. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    7. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    8. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    9. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    10. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    11. Samson Oladayo Ayanlade & Funso Kehinde Ariyo & Abdulrasaq Jimoh & Kayode Timothy Akindeji & Adeleye Oluwaseye Adetunji & Emmanuel Idowu Ogunwole & Dolapo Eniola Owolabi, 2023. "Optimal Allocation of Photovoltaic Distributed Generations in Radial Distribution Networks," Sustainability, MDPI, vol. 15(18), pages 1-26, September.
    12. Zhaonian Ye & Yongzhen Wang & Kai Han & Changlu Zhao & Juntao Han & Yilin Zhu, 2023. "Bi-Objective Optimization and Emergy Analysis of Multi-Distributed Energy System Considering Shared Energy Storage," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    13. Correa-Florez, Carlos Adrian & Gerossier, Alexis & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Stochastic operation of home energy management systems including battery cycling," Applied Energy, Elsevier, vol. 225(C), pages 1205-1218.
    14. Meinrenken, Christoph J. & Mehmani, Ali, 2019. "Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs," Applied Energy, Elsevier, vol. 254(C).
    15. Cheekatamarla, Praveen K. & Kassaee, Saiid & Abu-Heiba, Ahmad & Momen, Ayyoub M., 2022. "Near isothermal compressed air energy storage system in residential and commercial buildings: Techno-economic analysis," Energy, Elsevier, vol. 251(C).
    16. Zhang, Kai & Li, Jingzhi & He, Zhubin & Yan, Wanfeng, 2018. "Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 356-369.
    17. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    18. Yan, Jie & Liu, Shan & Yan, Yamin & Liu, Yongqian & Han, Shuang & Zhang, Haoran, 2024. "How to choose mobile energy storage or fixed energy storage in high proportion renewable energy scenarios: Evidence in China," Applied Energy, Elsevier, vol. 376(PB).
    19. Zhao, Xudong & Wang, Yibo & Liu, Chuang & Cai, Guowei & Ge, Weichun & Wang, Bowen & Wang, Dongzhe & Shang, Jingru & Zhao, Yiru, 2024. "Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition," Energy, Elsevier, vol. 302(C).
    20. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:428-:d:1570707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.