IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014186.html
   My bibliography  Save this article

Single and multi-objectives based on an improved golden jackal optimization algorithm for simultaneous integration of multiple capacitors and multi-type DGs in distribution systems

Author

Listed:
  • Elseify, Mohamed A.
  • Hashim, Fatma A.
  • Hussien, Abdelazim G.
  • Kamel, Salah

Abstract

This paper proposes a novel placement technique based on the improved golden jackal optimization (IGJO) algorithm for multiple capacitor banks (CBs) and multi-type DGs in a distribution network considering single and multi-objective problems. The proposed algorithm incorporates memory-based equations and random walk strategy to enhance the performance of the recent golden jackal optimization in terms of accuracy and convergence speed. The optimization problem is formulated as a weighted multi-objective that seeks to enhance the voltage profiles, boost stability, and minimize the total active power loss. An index named reactive loss sensitivity (QLSI) is also employed with the developed IGJO to identify the candidate nodes for the DGs and CBs installation to reduce the search space of the optimization algorithm. The robustness of the developed IGJO algorithm is evaluated through the CEC 2020 benchmark functions, and a comparison study is conducted with the original GJO and the other nine fresh competitors using various statistical tests to confirm its dominance and superiority. Then, the proposed IGJO is implemented in single and multi-objectives for the optimal deployment of multiple CBs individually and simultaneously with multiple DGs with different operating modes to enhance the performance of the IEEE 69-bus radial distribution system (RDS). The fetched outcomes are compared with the original GJO, weevil optimizer algorithm (WeevilOA), skill optimization algorithm (SOA), and Tasmanian devil optimization (TDO) to further measure its efficacy using different statistical tests. The IGJO algorithm is also applied to deploy multiple DGs for the IEEE 118-bus RDS with the aim of minimizing active loss. The simulation findings affirmed that the proposed IGJO technique beats the other rivals in all investigated situations, qualifying for the optimal inclusion of DGs in the presence of generation and demand uncertainties. Specifically, the integration of three units of CBs synchronously with three DGs Type-I and DG Type-III reduces the active power loss to 4.2664 kW and 3.4178 kW, respectively. The lowest power loss, approximately 2.7989 kW, is achieved with the simultaneous integration of three DG Type-I and DG Type-III using the developed IGJO algorithm.

Suggested Citation

  • Elseify, Mohamed A. & Hashim, Fatma A. & Hussien, Abdelazim G. & Kamel, Salah, 2024. "Single and multi-objectives based on an improved golden jackal optimization algorithm for simultaneous integration of multiple capacitors and multi-type DGs in distribution systems," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014186
    DOI: 10.1016/j.apenergy.2023.122054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayman Awad & Hussein Abdel-Mawgoud & Salah Kamel & Abdalla A. Ibrahim & Francisco Jurado, 2021. "Developing a Hybrid Optimization Algorithm for Optimal Allocation of Renewable DGs in Distribution Network," Clean Technol., MDPI, vol. 3(2), pages 1-15, May.
    2. Mohammed Hamouda Ali & Ahmed Tijani Salawudeen & Salah Kamel & Habeeb Bello Salau & Monier Habil & Mokhtar Shouran, 2022. "Single- and Multi-Objective Modified Aquila Optimizer for Optimal Multiple Renewable Energy Resources in Distribution Network," Mathematics, MDPI, vol. 10(12), pages 1-39, June.
    3. Chandrasekaran Venkatesan & Raju Kannadasan & Mohammed H. Alsharif & Mun-Kyeom Kim & Jamel Nebhen, 2021. "A Novel Multiobjective Hybrid Technique for Siting and Sizing of Distributed Generation and Capacitor Banks in Radial Distribution Systems," Sustainability, MDPI, vol. 13(6), pages 1-34, March.
    4. Mohamed A. Elseify & Salah Kamel & Hussein Abdel-Mawgoud & Ehab E. Elattar, 2022. "A Novel Approach Based on Honey Badger Algorithm for Optimal Allocation of Multiple DG and Capacitor in Radial Distribution Networks Considering Power Loss Sensitivity," Mathematics, MDPI, vol. 10(12), pages 1-26, June.
    5. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    6. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
    7. Ali Selim & Salah Kamel & Amal A. Mohamed & Ehab E. Elattar, 2021. "Optimal Allocation of Multiple Types of Distributed Generations in Radial Distribution Systems Using a Hybrid Technique," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    8. Thuan Thanh Nguyen & Thanh-Quyen Ngo & Thanh Long Duong & Thang Trung Nguyen & Alex Alexandridis, 2021. "Finding Radial Network Configuration of Distribution System Based on Modified Symbiotic Organisms Search," Complexity, Hindawi, vol. 2021, pages 1-23, February.
    9. Akanit Kwangkaew & Saher Javaid & Chalie Charoenlarpnopparut & Mineo Kaneko, 2022. "Optimal Location and Sizing of Renewable Distributed Generators for Improving Voltage Stability and Security Considering Reactive Power Compensation," Energies, MDPI, vol. 15(6), pages 1-23, March.
    10. Subrat Kumar Dash & Sivkumar Mishra & Almoataz Y. Abdelaziz & Mamdouh L. Alghaythi & Ahmed Allehyani, 2022. "Optimal Allocation of Distributed Generators in Active Distribution Networks Using a New Oppositional Hybrid Sine Cosine Muted Differential Evolution Algorithm," Energies, MDPI, vol. 15(6), pages 1-35, March.
    11. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).
    12. Abdurrahman Shuaibu Hassan & Yanxia Sun & Zenghui Wang, 2022. "Water, Energy and Food Algorithm with Optimal Allocation and Sizing of Renewable Distributed Generation for Power Loss Minimization in Distribution Systems (WEF)," Energies, MDPI, vol. 15(6), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed M. Mahmoud & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Mohamed Ezzat, 2022. "Towards Maximizing Hosting Capacity by Optimal Planning of Active and Reactive Power Compensators and Voltage Regulators: Case Study," Sustainability, MDPI, vol. 14(20), pages 1-34, October.
    2. Sunday Adeleke Salimon & Gafari Abiola Adepoju & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Samson Oladayo Ayanlade & Oludamilare Bode Adewuyi, 2023. "Impact of Distributed Generators Penetration Level on the Power Loss and Voltage Profile of Radial Distribution Networks," Energies, MDPI, vol. 16(4), pages 1-32, February.
    3. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Tadej Skrjanc & Rafael Mihalic & Urban Rudez, 2020. "Principal Component Analysis (PCA)-Supported Underfrequency Load Shedding Algorithm," Energies, MDPI, vol. 13(22), pages 1-9, November.
    5. Amitkumar V. Jha & Bhargav Appasani & Deepak Kumar Gupta & Taha Selim Ustun, 2022. "Analytical Design of Synchrophasor Communication Networks with Resiliency Analysis Framework for Smart Grid," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    6. Mkateko Vivian Mabunda & Ricky Munyaradzi Mukonza & Lufuno Robert Mudzanani, 2023. "The effects of loadshedding on small and medium enterprises in the Collins Chabane local municipality," Journal of Innovation and Entrepreneurship, Springer, vol. 12(1), pages 1-20, December.
    7. Nagaraju Dharavat & Suresh Kumar Sudabattula & Suresh Velamuri & Sachin Mishra & Naveen Kumar Sharma & Mohit Bajaj & Elmazeg Elgamli & Mokhtar Shouran & Salah Kamel, 2022. "Optimal Allocation of Renewable Distributed Generators and Electric Vehicles in a Distribution System Using the Political Optimization Algorithm," Energies, MDPI, vol. 15(18), pages 1-25, September.
    8. Mohammed Hamouda Ali & Ali M. El-Rifaie & Ahmed A. F. Youssef & Vladimir N. Tulsky & Mohamed A. Tolba, 2023. "Techno-Economic Strategy for the Load Dispatch and Power Flow in Power Grids Using Peafowl Optimization Algorithm," Energies, MDPI, vol. 16(2), pages 1-29, January.
    9. Vasiliki Vita & Georgios Fotis & Christos Pavlatos & Valeri Mladenov, 2023. "A New Restoration Strategy in Microgrids after a Blackout with Priority in Critical Loads," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    10. Sonal, & Ghosh, Debomita, 2022. "Impact of situational awareness attributes for resilience assessment of active distribution networks using hybrid dynamic Bayesian multi criteria decision-making approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. Pereira, Luan D.L. & Yahyaoui, Imene & Fiorotti, Rodrigo & de Menezes, Luíza S. & Fardin, Jussara F. & Rocha, Helder R.O. & Tadeo, Fernando, 2022. "Optimal allocation of distributed generation and capacitor banks using probabilistic generation models with correlations," Applied Energy, Elsevier, vol. 307(C).
    12. Biao Li & Tao Wang & Chunxiao Li & Zhen Dong & Hua Yang & Yi Sun & Pengfei Wang, 2022. "A Strategy for Determining the Decommissioning Life of Energy Equipment Based on Economic Factors and Operational Stability," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    13. Lakshmana Perumal Pattathurani & Subhransu S. Dash & Rajat K. Dwibedi & Mani Devesh Raj & Raju Kannadasan & Max F. Savio & Mohammed H. Alsharif & James Hyungkwan Kim, 2022. "Harmonics Minimisation in Non-Linear Grid System Using an Intelligent Hysteresis Current Controller Operated from a Solar Powered ZETA Converter," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    14. Asad Abbas & Saeed Mian Qaisar & Asad Waqar & Nasim Ullah & Ahmad Aziz Al Ahmadi, 2022. "Min-Max Regret-Based Approach for Sizing and Placement of DGs in Distribution System under a 24 h Load Horizon," Energies, MDPI, vol. 15(10), pages 1-32, May.
    15. Wiese, Melanie & van der Westhuizen, Liezl-Marié, 2024. "Impact of planned power outages (load shedding) on consumers in developing countries: Evidence from South Africa," Energy Policy, Elsevier, vol. 187(C).
    16. Chandrasekaran Venkatesan & Raju Kannadasan & Dhanasekar Ravikumar & Vijayaraja Loganathan & Mohammed H. Alsharif & Daeyong Choi & Junhee Hong & Zong Woo Geem, 2021. "Re-Allocation of Distributed Generations Using Available Renewable Potential Based Multi-Criterion-Multi-Objective Hybrid Technique," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    17. Abid, Md. Shadman & Ahshan, Razzaqul & Al Abri, Rashid & Al-Badi, Abdullah & Albadi, Mohammed, 2024. "Techno-economic and environmental assessment of renewable energy sources, virtual synchronous generators, and electric vehicle charging stations in microgrids," Applied Energy, Elsevier, vol. 353(PA).
    18. Mohammed Hamouda Ali & Ahmed Tijani Salawudeen & Salah Kamel & Habeeb Bello Salau & Monier Habil & Mokhtar Shouran, 2022. "Single- and Multi-Objective Modified Aquila Optimizer for Optimal Multiple Renewable Energy Resources in Distribution Network," Mathematics, MDPI, vol. 10(12), pages 1-39, June.
    19. Hassan Mohammadi Pirouz & Amin Hajizadeh, 2020. "A Highly Reliable Propulsion System with Onboard Uninterruptible Power Supply for Train Application: Topology and Control," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    20. Muhammad Shahroz Sultan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Dong Ryeol Shin, 2023. "Multi-Objective Optimization-Based Approach for Optimal Allocation of Distributed Generation Considering Techno-Economic and Environmental Indices," Sustainability, MDPI, vol. 15(5), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.