IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9580-d1171134.html
   My bibliography  Save this article

Research on Combination of Distributed Generation Placement and Dynamic Distribution Network Reconfiguration Based on MIBWOA

Author

Listed:
  • Xin Yan

    (Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China)

  • Qian Zhang

    (Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China)

Abstract

This paper aims to address the combination of distributed generation placement and dynamic distribution network reconfiguration. Herein, a multi-strategy multi-objective improved black widow algorithm is proposed. A model is established, which considers the objectives of minimizing active power loss, voltage deviation, and carbon emission. The proposed algorithm significantly enhances the traversal capability and search speed by employing Cubic–Tent chaotic mapping, involving a novel formula with the fusion of optimal genes, and employing an adaptive mutation of Wald mutation and elite reverse learning mixing. The DeepSCN is employed to forecast the distributed generation (DG) output power and distribution network load. Through various test functions, the capability of the proposed algorithm is demonstrated. Whether single-objective or multi-objective, the algorithm has excellent performance. To showcase the practicality and effectiveness of the model and approach, a simulation experiment was performed on the IEEE-33 node configuration. The solution set provided by MIBWOA can reduce active network loss to improve operating efficiency, increase voltage offset to make operation more stable, and reduce carbon emissions to make operation more environmentally friendly. The proposed algorithm shows excellent performance in distributed generation placement and distribution network reconfiguration compared with the comparison algorithms. The results show that the solution proposed by MIBWOA can enhance the real-time operational parameters of the distribution network with considerable efficiency.

Suggested Citation

  • Xin Yan & Qian Zhang, 2023. "Research on Combination of Distributed Generation Placement and Dynamic Distribution Network Reconfiguration Based on MIBWOA," Sustainability, MDPI, vol. 15(12), pages 1-34, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9580-:d:1171134
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ehsan, Ali & Yang, Qiang, 2019. "State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review," Applied Energy, Elsevier, vol. 239(C), pages 1509-1523.
    2. Raida Sellami & Imene Khenissi & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Kamel Tlijani & Rafik Neji, 2022. "Optimal Reconfiguration of Distribution Network Considering Stochastic Wind Energy and Load Variation Using Hybrid SAMPSO Optimization Method," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    3. Ibrahim Diaaeldin & Shady Abdel Aleem & Ahmed El-Rafei & Almoataz Abdelaziz & Ahmed F. Zobaa, 2019. "Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation," Energies, MDPI, vol. 12(21), pages 1-31, November.
    4. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    5. Muthukumar Kandasamy & Renugadevi Thangavel & Thamaraiselvi Arumugam & Jayachandran Jayaram & Wook-Won Kim & Zong Woo Geem, 2022. "Performance Enhancement of Radial Power Distribution Networks Using Network Reconfiguration and Optimal Planning of Solar Photovoltaic-Based Distributed Generation and Shunt Capacitors," Sustainability, MDPI, vol. 14(18), pages 1-36, September.
    6. Bo Gu & Xi Li & Fengliang Xu & Xiaopeng Yang & Fayi Wang & Pengzhan Wang, 2023. "Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Based on WT-CNN-BiLSTM-AM-GMM," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    7. Dhivya Swaminathan & Arul Rajagopalan & Oscar Danilo Montoya & Savitha Arul & Luis Fernando Grisales-Noreña, 2023. "Distribution Network Reconfiguration Based on Hybrid Golden Flower Algorithm for Smart Cities Evolution," Energies, MDPI, vol. 16(5), pages 1-24, March.
    8. Chen, Jiahao & Sun, Bing & Li, Yunfei & Jing, Ruipeng & Zeng, Yuan & Li, Minghao, 2022. "Credible capacity calculation method of distributed generation based on equal power supply reliability criterion," Renewable Energy, Elsevier, vol. 201(P1), pages 534-547.
    9. Doagou-Mojarrad, Hasan & Gharehpetian, G.B. & Rastegar, H. & Olamaei, Javad, 2013. "Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm," Energy, Elsevier, vol. 54(C), pages 129-138.
    10. Abdullah Shaheen & Ragab El-Sehiemy & Salah Kamel & Ali Selim, 2022. "Optimal Operational Reliability and Reconfiguration of Electrical Distribution Network Based on Jellyfish Search Algorithm," Energies, MDPI, vol. 15(19), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matheus Diniz Gonçalves-Leite & Edgar Manuel Carreño-Franco & Jesús M. López-Lezama, 2023. "Impact of Distributed Generation on the Effectiveness of Electric Distribution System Reconfiguration," Energies, MDPI, vol. 16(17), pages 1-20, August.
    2. Min Zhu & Saber Arabi Nowdeh & Aspassia Daskalopulu, 2023. "An Improved Human-Inspired Algorithm for Distribution Network Stochastic Reconfiguration Using a Multi-Objective Intelligent Framework and Unscented Transformation," Mathematics, MDPI, vol. 11(17), pages 1-23, August.
    3. Wei-Chen Lin & Chao-Hsien Hsiao & Wei-Tzer Huang & Kai-Chao Yao & Yih-Der Lee & Jheng-Lun Jian & Yuan Hsieh, 2024. "Network Reconfiguration Framework for CO 2 Emission Reduction and Line Loss Minimization in Distribution Networks Using Swarm Optimization Algorithms," Sustainability, MDPI, vol. 16(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Zhu & Saber Arabi Nowdeh & Aspassia Daskalopulu, 2023. "An Improved Human-Inspired Algorithm for Distribution Network Stochastic Reconfiguration Using a Multi-Objective Intelligent Framework and Unscented Transformation," Mathematics, MDPI, vol. 11(17), pages 1-23, August.
    2. Wei-Chen Lin & Chao-Hsien Hsiao & Wei-Tzer Huang & Kai-Chao Yao & Yih-Der Lee & Jheng-Lun Jian & Yuan Hsieh, 2024. "Network Reconfiguration Framework for CO 2 Emission Reduction and Line Loss Minimization in Distribution Networks Using Swarm Optimization Algorithms," Sustainability, MDPI, vol. 16(4), pages 1-17, February.
    3. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    4. Barik, Soumyabrata & Das, Debapriya, 2020. "A novel Q−PQV bus pair method of biomass DGs placement in distribution networks to maintain the voltage of remotely located buses," Energy, Elsevier, vol. 194(C).
    5. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    6. J. Rajalakshmi & S. Durairaj, 2021. "Application of multi-objective optimization algorithm for siting and sizing of distributed generations in distribution networks," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 267-289, February.
    7. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    8. S M Mezbahul Amin & Abul Hasnat & Nazia Hossain, 2023. "Designing and Analysing a PV/Battery System via New Resilience Indicators," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    9. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    10. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah, 2015. "An efficient scenario-based stochastic programming for optimal planning of combined heat, power, and hydrogen production of molten carbonate fuel cell power plants," Energy, Elsevier, vol. 83(C), pages 734-748.
    11. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    12. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    13. Xuejun Zheng & Shaorong Wang & Xin Su & Mengmeng Xiao & Zia Ullah & Xin Hu & Chang Ye, 2021. "Real-Time Dynamic Behavior Evaluation of Active Distribution Networks Leveraging Low-Cost PMUs," Energies, MDPI, vol. 14(16), pages 1-20, August.
    14. Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2023. "A Literature Review on the Optimal Placement of Static Synchronous Compensator (STATCOM) in Distribution Networks," Energies, MDPI, vol. 16(17), pages 1-38, August.
    15. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    16. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    17. Ding, Yihong & Tan, Qinliang & Shan, Zijing & Han, Jian & Zhang, Yimei, 2023. "A two-stage dispatching optimization strategy for hybrid renewable energy system with low-carbon and sustainability in ancillary service market," Renewable Energy, Elsevier, vol. 207(C), pages 647-659.
    18. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    19. Yi Hao & Zhigang Huang & Shiqian Ma & Jiakai Huang & Jiahao Chen & Bing Sun, 2023. "Evaluation Method of the Incremental Power Supply Capability Brought by Distributed Generation," Energies, MDPI, vol. 16(16), pages 1-17, August.
    20. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9580-:d:1171134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.