IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i10p355-d1488740.html
   My bibliography  Save this article

Multi-User Optimal Load Scheduling of Different Objectives Combined with Multi-Criteria Decision Making for Smart Grid

Author

Listed:
  • Yaarob Al-Nidawi

    (Department of Computer Engineering, Mustansiriyah University, Baghdad 14022, Iraq)

  • Haider Tarish Haider

    (Department of Computer Engineering, Mustansiriyah University, Baghdad 14022, Iraq)

  • Dhiaa Halboot Muhsen

    (Department of Computer Engineering, Mustansiriyah University, Baghdad 14022, Iraq)

  • Ghadeer Ghazi Shayea

    (College of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad 10001, Iraq)

Abstract

Load balancing between required power demand and the available generation capacity is the main task of demand response for a smart grid. Matching between the objectives of users and utilities is the main gap that should be addressed in the demand response context. In this paper, a multi-user optimal load scheduling is proposed to benefit both utility companies and users. Different objectives are considered to form a multi-objective artificial hummingbird algorithm (MAHA). The cost of energy consumption, peak of load, and user inconvenience are the main objectives considered in this work. A hybrid multi-criteria decision making method is considered to select the dominance solutions. This approach is based on the removal effects of criteria (MERECs) and is utilized for deriving appropriate weights of various criteria. Next, the Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR) method is used to find the best solution of load scheduling from a set of Pareto front solutions produced by MAHA. Multiple pricing schemes are applied in this work, namely the time of use (ToU) and adaptive consumption level pricing scheme (ACLPS), to test the proposed system with regards to different pricing rates. Furthermore, non-cooperative and cooperative users’ working schemes are considered to overcome the issue of making a new peak load time through shifting the user load from the peak to off-peak period to realize minimum energy cost. The results demonstrate 81% cost savings for the proposed method with the cooperative mode while using ACLPS and 40% savings regarding ToU. Furthermore, the peak saving for the same mode of operation provides about 68% and 64% for ACLPs and ToU, respectively. The finding of this work has been validated against other related contributions to examine the significance of the proposed technique. The analyses in this research have concluded that the presented approach has realized a remarkable saving for the peak power intervals and energy cost while maintaining an acceptable range of the customer inconvenience level.

Suggested Citation

  • Yaarob Al-Nidawi & Haider Tarish Haider & Dhiaa Halboot Muhsen & Ghadeer Ghazi Shayea, 2024. "Multi-User Optimal Load Scheduling of Different Objectives Combined with Multi-Criteria Decision Making for Smart Grid," Future Internet, MDPI, vol. 16(10), pages 1-23, September.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:10:p:355-:d:1488740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/10/355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/10/355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).
    2. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Liya & Hui, Hongxun & Wang, Sheng & Song, Yonghua, 2024. "Coordinated optimization of power-communication coupling networks for dispatching large-scale flexible loads to provide operating reserve," Applied Energy, Elsevier, vol. 359(C).
    2. Turki Alsuwian & Aiman Shahid Butt & Arslan Ahmed Amin, 2022. "Smart Grid Cyber Security Enhancement: Challenges and Solutions—A Review," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    3. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    4. Emad A. Mohamed & Mokhtar Aly & Masayuki Watanabe, 2022. "New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids," Mathematics, MDPI, vol. 10(16), pages 1-33, August.
    5. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    6. Sun, Mingyi & Zhao, Xia & Tan, Hong & Li, Xinyi, 2022. "Coordinated operation of the integrated electricity-water distribution system and water-cooled 5G base stations," Energy, Elsevier, vol. 238(PC).
    7. Xiao, Jucheng & He, Guangyu & Fan, Shuai & Zhang, Siyuan & Wu, Qing & Li, Zuyi, 2020. "Decentralized transfer of contingency reserve: Framework and methodology," Applied Energy, Elsevier, vol. 278(C).
    8. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    9. Kong, Xiangyu & Sun, Fangyuan & Huo, Xianxu & Li, Xue & Shen, Yu, 2020. "Hierarchical optimal scheduling method of heat-electricity integrated energy system based on Power Internet of Things," Energy, Elsevier, vol. 210(C).
    10. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    11. Elseify, Mohamed A. & Hashim, Fatma A. & Hussien, Abdelazim G. & Kamel, Salah, 2024. "Single and multi-objectives based on an improved golden jackal optimization algorithm for simultaneous integration of multiple capacitors and multi-type DGs in distribution systems," Applied Energy, Elsevier, vol. 353(PA).
    12. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
    13. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    14. Lyu, Wenjing & Liu, Jin, 2021. "Soft skills, hard skills: What matters most? Evidence from job postings," Applied Energy, Elsevier, vol. 300(C).
    15. Sankar, Matta Mani & Chatterjee, Kalyan, 2023. "A posteriori multiobjective approach for techno-economic allocation of PV and BES units in a distribution system hosting PHEVs," Applied Energy, Elsevier, vol. 351(C).
    16. Zeng, Bo & Zhang, Weixiang & Hu, Pinduan & Sun, Jing & Gong, Dunwei, 2023. "Synergetic renewable generation allocation and 5G base station placement for decarbonizing development of power distribution system: A multi-objective interval evolutionary optimization approach," Applied Energy, Elsevier, vol. 351(C).
    17. Matthew Boeding & Paul Scalise & Michael Hempel & Hamid Sharif & Juan Lopez, 2024. "Toward Wireless Smart Grid Communications: An Evaluation of Protocol Latencies in an Open-Source 5G Testbed," Energies, MDPI, vol. 17(2), pages 1-18, January.
    18. Elham Mahdavi & Seifollah Asadpour & Leonardo H. Macedo & Rubén Romero, 2023. "Reconfiguration of Distribution Networks with Simultaneous Allocation of Distributed Generation Using the Whale Optimization Algorithm," Energies, MDPI, vol. 16(12), pages 1-19, June.
    19. Lilia Tightiz & Hyosik Yang & Mohammad Jalil Piran, 2020. "A Survey on Enhanced Smart Micro-Grid Management System with Modern Wireless Technology Contribution," Energies, MDPI, vol. 13(9), pages 1-21, May.
    20. Biao Li & Tao Wang & Chunxiao Li & Zhen Dong & Hua Yang & Yi Sun & Pengfei Wang, 2022. "A Strategy for Determining the Decommissioning Life of Energy Equipment Based on Economic Factors and Operational Stability," Sustainability, MDPI, vol. 14(24), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:10:p:355-:d:1488740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.