IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i17p3658-d1224391.html
   My bibliography  Save this article

An Improved Human-Inspired Algorithm for Distribution Network Stochastic Reconfiguration Using a Multi-Objective Intelligent Framework and Unscented Transformation

Author

Listed:
  • Min Zhu

    (College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China)

  • Saber Arabi Nowdeh

    (Institute of Research Sciences, Power and Energy Group, Johor Bahru 81310, Malaysia)

  • Aspassia Daskalopulu

    (Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece)

Abstract

In this paper, a stochastic multi-objective intelligent framework (MOIF) is performed for distribution network reconfiguration to minimize power losses, the number of voltage sags, the system’s average RMS fluctuation, the average system interruption frequency (ASIFI), the momentary average interruption frequency (MAIFI), and the system average interruption frequency (SAIFI) considering the network uncertainty. The unscented transformation (UT) approach is applied to model the demand uncertainty due to its being simple to implement and requiring no assumptions to simplify it. A human-inspired intelligent method named improved mountaineering team-based optimization (IMTBO) is used to find the decision variables defined as the network’s optimal configuration. The conventional MTBO is improved using a quasi-opposition-based learning strategy to overcome premature convergence and achieve the optimal solution. The simulation results showed that in single- and double-objective optimization some objectives are weakened compared to their base value, while the results of the MOIF indicate a fair compromise between different objectives, and all objectives are enhanced. The results of the MOIF based on the IMTBO clearly showed that the losses are reduced by 30.94%, the voltage sag numbers and average RMS fluctuation are reduced by 33.68% and 33.65%, and also ASIFI, MAIFI, and SAIFI are improved by 6.80%, 44.61%, and 0.73%, respectively. Also, the superior capability of the MOIF based on the IMTBO is confirmed compared to the conventional MTBO, particle swarm optimization, and the artificial electric field algorithm. Moreover, the results of the stochastic MOIF based on the UT showed the power loss increased by 7.62%, voltage sag and SARFI increased by 5.39% and 5.31%, and ASIFI, MAIFI, and SAIFI weakened by 2.28%, 6.61%, and 1.48%, respectively, compared to the deterministic MOIF model.

Suggested Citation

  • Min Zhu & Saber Arabi Nowdeh & Aspassia Daskalopulu, 2023. "An Improved Human-Inspired Algorithm for Distribution Network Stochastic Reconfiguration Using a Multi-Objective Intelligent Framework and Unscented Transformation," Mathematics, MDPI, vol. 11(17), pages 1-23, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3658-:d:1224391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/17/3658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/17/3658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Josephy Dias Santos & Frederico Marques & Lina Paola Garcés Negrete & Gelson A. Andrêa Brigatto & Jesús M. López-Lezama & Nicolás Muñoz-Galeano, 2022. "A Novel Solution Method for the Distribution Network Reconfiguration Problem Based on a Search Mechanism Enhancement of the Improved Harmony Search Algorithm," Energies, MDPI, vol. 15(6), pages 1-15, March.
    2. Xin Yan & Qian Zhang, 2023. "Research on Combination of Distributed Generation Placement and Dynamic Distribution Network Reconfiguration Based on MIBWOA," Sustainability, MDPI, vol. 15(12), pages 1-34, June.
    3. Damir Jakus & Rade Čađenović & Josip Vasilj & Petar Sarajčev, 2020. "Optimal Reconfiguration of Distribution Networks Using Hybrid Heuristic-Genetic Algorithm," Energies, MDPI, vol. 13(7), pages 1-21, March.
    4. Mulusew Ayalew & Baseem Khan & Zuhair Muhammed Alaas, 2022. "Optimal Service Restoration Scheme for Radial Distribution Network Using Teaching Learning Based Optimization," Energies, MDPI, vol. 15(7), pages 1-20, March.
    5. Ibrahim Mohamed Diaaeldin & Shady H. E. Abdel Aleem & Ahmed El-Rafei & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2019. "A Novel Graphically-Based Network Reconfiguration for Power Loss Minimization in Large Distribution Systems," Mathematics, MDPI, vol. 7(12), pages 1-17, December.
    6. Edy Quintana & Esteban Inga, 2022. "Optimal Reconfiguration of Electrical Distribution System Using Heuristic Methods with Geopositioning Constraints," Energies, MDPI, vol. 15(15), pages 1-20, July.
    7. Minsheng Yang & Jianqi Li & Jianying Li & Xiaofang Yuan & Jiazhu Xu, 2021. "Reconfiguration Strategy for DC Distribution Network Fault Recovery Based on Hybrid Particle Swarm Optimization," Energies, MDPI, vol. 14(21), pages 1-15, November.
    8. Ibrahim Diaaeldin & Shady Abdel Aleem & Ahmed El-Rafei & Almoataz Abdelaziz & Ahmed F. Zobaa, 2019. "Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation," Energies, MDPI, vol. 12(21), pages 1-31, November.
    9. Dhivya Swaminathan & Arul Rajagopalan & Oscar Danilo Montoya & Savitha Arul & Luis Fernando Grisales-Noreña, 2023. "Distribution Network Reconfiguration Based on Hybrid Golden Flower Algorithm for Smart Cities Evolution," Energies, MDPI, vol. 16(5), pages 1-24, March.
    10. Ezequiel C. Pereira & Carlos H. N. R. Barbosa & João A. Vasconcelos, 2023. "Distribution Network Reconfiguration Using Iterative Branch Exchange and Clustering Technique," Energies, MDPI, vol. 16(5), pages 1-20, March.
    11. Rade Čađenović & Damir Jakus & Petar Sarajčev & Josip Vasilj, 2018. "Optimal Distribution Network Reconfiguration through Integration of Cycle-Break and Genetic Algorithms," Energies, MDPI, vol. 11(5), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Yan & Qian Zhang, 2023. "Research on Combination of Distributed Generation Placement and Dynamic Distribution Network Reconfiguration Based on MIBWOA," Sustainability, MDPI, vol. 15(12), pages 1-34, June.
    2. Elham Mahdavi & Seifollah Asadpour & Leonardo H. Macedo & Rubén Romero, 2023. "Reconfiguration of Distribution Networks with Simultaneous Allocation of Distributed Generation Using the Whale Optimization Algorithm," Energies, MDPI, vol. 16(12), pages 1-19, June.
    3. Filipe F. C. Silva & Pedro M. S. Carvalho & Luís A. F. M. Ferreira, 2021. "Improving PV Resilience by Dynamic Reconfiguration in Distribution Grids: Problem Complexity and Computation Requirements," Energies, MDPI, vol. 14(4), pages 1-15, February.
    4. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2023. "Optimal Integration of Distribution Network Reconfiguration and Conductor Selection in Power Distribution Systems via MILP," Energies, MDPI, vol. 16(19), pages 1-25, October.
    5. Mohammed Alqahtani & Ponnusamy Marimuthu & Veerasamy Moorthy & B. Pangedaiah & Ch. Rami Reddy & M. Kiran Kumar & Muhammad Khalid, 2023. "Investigation and Minimization of Power Loss in Radial Distribution Network Using Gray Wolf Optimization," Energies, MDPI, vol. 16(12), pages 1-15, June.
    6. Wei-Chen Lin & Chao-Hsien Hsiao & Wei-Tzer Huang & Kai-Chao Yao & Yih-Der Lee & Jheng-Lun Jian & Yuan Hsieh, 2024. "Network Reconfiguration Framework for CO 2 Emission Reduction and Line Loss Minimization in Distribution Networks Using Swarm Optimization Algorithms," Sustainability, MDPI, vol. 16(4), pages 1-19, February.
    7. Matheus Diniz Gonçalves-Leite & Edgar Manuel Carreño-Franco & Jesús M. López-Lezama, 2023. "Impact of Distributed Generation on the Effectiveness of Electric Distribution System Reconfiguration," Energies, MDPI, vol. 16(17), pages 1-20, August.
    8. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    9. Juan Li & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Survey of Lévy Flight-Based Metaheuristics for Optimization," Mathematics, MDPI, vol. 10(15), pages 1-27, August.
    10. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2022. "A Mixed-Integer Linear Programming Model for the Simultaneous Optimal Distribution Network Reconfiguration and Optimal Placement of Distributed Generation," Energies, MDPI, vol. 15(9), pages 1-26, April.
    11. Irina I. Picioroaga & Andrei M. Tudose & Dorian O. Sidea & Constantin Bulac, 2022. "Supply Restoration in Active Distribution Networks Based on Soft Open Points with Embedded DC Microgrids," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    12. Chaminda Bandara, W.G. & Godaliyadda, G.M.R.I. & Ekanayake, M.P.B. & Ekanayake, J.B., 2020. "Coordinated photovoltaic re-phasing: A novel method to maximize renewable energy integration in low voltage networks by mitigating network unbalances," Applied Energy, Elsevier, vol. 280(C).
    13. Santiago Bustamante-Mesa & Jorge W. Gonzalez-Sanchez & Sergio D. Saldarriaga-Zuluaga & Jesús M. López-Lezama & Nicolás Muñoz-Galeano, 2024. "Optimal Estimation of Under-Frequency Load Shedding Scheme Parameters by Considering Virtual Inertia Injection," Energies, MDPI, vol. 17(2), pages 1-20, January.
    14. Subrat Kumar Dash & Sivkumar Mishra & Almoataz Y. Abdelaziz & Mamdouh L. Alghaythi & Ahmed Allehyani, 2022. "Optimal Allocation of Distributed Generators in Active Distribution Networks Using a New Oppositional Hybrid Sine Cosine Muted Differential Evolution Algorithm," Energies, MDPI, vol. 15(6), pages 1-35, March.
    15. Tianxiang Ma & Ziqi Hu & Yan Xu & Haoran Dong, 2022. "Fault Location Based on Comprehensive Grey Correlation Degree Analysis for Flexible DC Distribution Network," Energies, MDPI, vol. 15(20), pages 1-16, October.
    16. Alex Valenzuela & Silvio Simani & Esteban Inga, 2021. "Automatic Overcurrent Protection Coordination after Distribution Network Reconfiguration Based on Peer-To-Peer Communication," Energies, MDPI, vol. 14(11), pages 1-22, June.
    17. Saman Shahrokhi & Adel El-Shahat & Fatemeh Masoudinia & Foad H. Gandoman & Shady H. E. Abdel Aleem, 2021. "Sizing and Energy Management of Parking Lots of Electric Vehicles Based on Battery Storage with Wind Resources in Distribution Network," Energies, MDPI, vol. 14(20), pages 1-21, October.
    18. Alex Valenzuela & Iván Montalvo & Esteban Inga, 2019. "A Decision-Making Tool for Electric Distribution Network Planning Based on Heuristics and Georeferenced Data," Energies, MDPI, vol. 12(21), pages 1-18, October.
    19. Artis, Reza & Assili, Mohsen & Shivaie, Mojtaba, 2022. "A seismic-resilient multi-level framework for distribution network reinforcement planning considering renewable-based multi-microgrids," Applied Energy, Elsevier, vol. 325(C).
    20. Mohamed Abd-El-Hakeem Mohamed & Ziad M. Ali & Mahrous Ahmed & Saad F. Al-Gahtani, 2021. "Energy Saving Maximization of Balanced and Unbalanced Distribution Power Systems via Network Reconfiguration and Optimum Capacitor Allocation Using a Hybrid Metaheuristic Algorithm," Energies, MDPI, vol. 14(11), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3658-:d:1224391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.