IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2759-d790094.html
   My bibliography  Save this article

A New Self-Adaptive Teaching–Learning-Based Optimization with Different Distributions for Optimal Reactive Power Control in Power Networks

Author

Listed:
  • Ali S. Alghamdi

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

Abstract

Teaching–learning-based optimization has the disadvantages of weak population diversity and the tendency to fall into local optima, especially for multimodal and high-dimensional problems such as the optimal reactive power dispatch problem. To overcome these shortcomings, first, in this study, a new enhanced TLBO is proposed through novel and effective θ -self-adaptive teaching and learning to optimize voltage and active loss management in power networks, which is called the optimal reactive power control problem with continuous and discontinuous control variables. Voltage and active loss management in any energy network can be optimized by finding the optimal control parameters, including generator voltage, shunt power compensators, and the tap positions of tap changers, among others. As a result, an efficient and powerful optimization algorithm is required to handle this challenging situation. The proposed algorithms utilized in this research were improved by introducing new mutation operators for multi-objective optimal reactive power control in popular standard IEEE 30-bus and IEEE 57-bus networks. The numerical simulation data reveal potential high-quality solutions with better performance and accuracy using the proposed optimization algorithms in comparison with the basic teaching–learning-based optimization algorithm and previously reported results.

Suggested Citation

  • Ali S. Alghamdi, 2022. "A New Self-Adaptive Teaching–Learning-Based Optimization with Different Distributions for Optimal Reactive Power Control in Power Networks," Energies, MDPI, vol. 15(8), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2759-:d:790094
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zelan Li & Yijia Cao & Le Van Dai & Xiaoliang Yang & Thang Trung Nguyen, 2019. "Finding Solutions for Optimal Reactive Power Dispatch Problem by a Novel Improved Antlion Optimization Algorithm," Energies, MDPI, vol. 12(15), pages 1-31, August.
    2. Asma Meddeb & Nesrine Amor & Mohamed Abbes & Souad Chebbi, 2018. "A Novel Approach Based on Crow Search Algorithm for Solving Reactive Power Dispatch Problem," Energies, MDPI, vol. 11(12), pages 1-16, November.
    3. Thang Trung Nguyen & Dieu Ngoc Vo & Hai Van Tran & Le Van Dai, 2019. "Optimal Dispatch of Reactive Power Using Modified Stochastic Fractal Search Algorithm," Complexity, Hindawi, vol. 2019, pages 1-28, May.
    4. Martinez-Rojas, Marcela & Sumper, Andreas & Gomis-Bellmunt, Oriol & Sudrià-Andreu, Antoni, 2011. "Reactive power dispatch in wind farms using particle swarm optimization technique and feasible solutions search," Applied Energy, Elsevier, vol. 88(12), pages 4678-4686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahenda Sarhan & Abdullah Shaheen & Ragab El-Sehiemy & Mona Gafar, 2022. "A Multi-Objective Teaching–Learning Studying-Based Algorithm for Large-Scale Dispatching of Combined Electrical Power and Heat Energies," Mathematics, MDPI, vol. 10(13), pages 1-26, June.
    2. Shahenda Sarhan & Abdullah M. Shaheen & Ragab A. El-Sehiemy & Mona Gafar, 2022. "Enhanced Teaching Learning-Based Algorithm for Fuel Costs and Losses Minimization in AC-DC Systems," Mathematics, MDPI, vol. 10(13), pages 1-22, July.
    3. Abdulaziz Almalaq & Tawfik Guesmi & Saleh Albadran, 2023. "A Hybrid Chaotic-Based Multiobjective Differential Evolution Technique for Economic Emission Dispatch Problem," Energies, MDPI, vol. 16(12), pages 1-34, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samson Ademola Adegoke & Yanxia Sun, 2023. "Diminishing Active Power Loss and Improving Voltage Profile Using an Improved Pathfinder Algorithm Based on Inertia Weight," Energies, MDPI, vol. 16(3), pages 1-14, January.
    2. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    3. Bogdan Tomoiagă & Mircea Chindriş & Andreas Sumper & Antoni Sudria-Andreu & Roberto Villafafila-Robles, 2013. "Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II," Energies, MDPI, vol. 6(3), pages 1-17, March.
    4. Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
    5. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    6. Shahenda Sarhan & Abdullah Shaheen & Ragab El-Sehiemy & Mona Gafar, 2023. "An Augmented Social Network Search Algorithm for Optimal Reactive Power Dispatch Problem," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    7. Hung, Duong Quoc & Mithulananthan, N., 2014. "Loss reduction and loadability enhancement with DG: A dual-index analytical approach," Applied Energy, Elsevier, vol. 115(C), pages 233-241.
    8. Martín M. Sánchez-Mora & Walter M. Villa-Acevedo & Jesús M. López-Lezama, 2023. "Multi-Area and Multi-Period Optimal Reactive Power Dispatch in Electric Power Systems," Energies, MDPI, vol. 16(17), pages 1-24, September.
    9. Schönleber, Kevin & Collados, Carlos & Pinto, Rodrigo Teixeira & Ratés-Palau, Sergi & Gomis-Bellmunt, Oriol, 2017. "Optimization-based reactive power control in HVDC-connected wind power plants," Renewable Energy, Elsevier, vol. 109(C), pages 500-509.
    10. Jae-Kun Lyu & Jae-Haeng Heo & Jong-Keun Park & Yong-Cheol Kang, 2013. "Probabilistic Approach to Optimizing Active and Reactive Power Flow in Wind Farms Considering Wake Effects," Energies, MDPI, vol. 6(11), pages 1-21, October.
    11. Ashraf Ramadan & Mohamed Ebeed & Salah Kamel & Almoataz Y. Abdelaziz & Hassan Haes Alhelou, 2021. "Scenario-Based Stochastic Framework for Optimal Planning of Distribution Systems Including Renewable-Based DG Units," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    12. Wang, Ni & Li, Jian & Hu, Weihao & Zhang, Baohua & Huang, Qi & Chen, Zhe, 2019. "Optimal reactive power dispatch of a full-scale converter based wind farm considering loss minimization," Renewable Energy, Elsevier, vol. 139(C), pages 292-301.
    13. Oludamilare Bode Adewuyi & Ayooluwa Peter Adeagbo & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Yanxia Sun, 2021. "Modified Analytical Approach for PV-DGs Integration into a Radial Distribution Network Considering Loss Sensitivity and Voltage Stability," Energies, MDPI, vol. 14(22), pages 1-20, November.
    14. Zhang, Qiang & Ogren, Ryan M. & Kong, Song-Charng, 2016. "A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO–GA and basic GA," Applied Energy, Elsevier, vol. 165(C), pages 676-684.
    15. Sousa, Tiago & Morais, Hugo & Vale, Zita & Castro, Rui, 2015. "A multi-objective optimization of the active and reactive resource scheduling at a distribution level in a smart grid context," Energy, Elsevier, vol. 85(C), pages 236-250.
    16. Ghaffari, Abolfazl & Askarzadeh, Alireza & Fadaeinedjad, Roohollah, 2022. "Optimal allocation of energy storage systems, wind turbines and photovoltaic systems in distribution network considering flicker mitigation," Applied Energy, Elsevier, vol. 319(C).
    17. Mohseni-Bonab, Seyed Masoud & Rabiee, Abbas & Mohammadi-Ivatloo, Behnam, 2016. "Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach," Renewable Energy, Elsevier, vol. 85(C), pages 598-609.
    18. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability," Applied Energy, Elsevier, vol. 113(C), pages 1162-1170.
    19. Biswas (Raha), Syamasree & Mandal, Kamal Krishna & Chakraborty, Niladri, 2016. "Pareto-efficient double auction power transactions for economic reactive power dispatch," Applied Energy, Elsevier, vol. 168(C), pages 610-627.
    20. S. N. V. S. K. Chaitanya & R. Ashok Bakkiyaraj & B. Venkateswara Rao, 2023. "Multi objective optimal reactive power dispatch for enrichment of power system behavior using modified ant lion optimizer," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 133-142, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2759-:d:790094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.