IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5199-d1188082.html
   My bibliography  Save this article

Collaborative Optimization of Transmission and Distribution Considering Energy Storage Systems on Both Sides of Transmission and Distribution

Author

Listed:
  • Zekai Xu

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Jinghan He

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Zhao Liu

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Zhiyi Zhao

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

Abstract

With the high penetration of renewable energy resources, power systems are facing increasing challenges in terms of flexibility and regulation capability. To address these, energy storage systems (ESSs) have been deployed on both transmission systems and distribution systems. However, it is hard to coordinate these ESSs with a single centralized optimization, and the time-domain coupling constraints of ESSs lead to high optimization complexity and a time-consuming calculation process. In this regard, this paper proposes a hierarchical transmission and distribution systems coordinative optimization framework, considering the ESSs at both ends of the systems. The decoupling of the time-domain coupling constraints of ESSs is realized by the Lyapunov optimization. Furthermore, the decoupling mechanism is embedded in the iterative process of analytical target cascading (ATC). In addition, an ATC-based Lyapunov optimization (ATC-L) approach is proposed to solve the co-optimization problem of the operations of the transmission system with multiple connected distribution systems. Through a case study, it is verified that the proposed framework and the ATC-L approach can effectively reduce the system’s operational cost and improve the consumption rate of renewable energy.

Suggested Citation

  • Zekai Xu & Jinghan He & Zhao Liu & Zhiyi Zhao, 2023. "Collaborative Optimization of Transmission and Distribution Considering Energy Storage Systems on Both Sides of Transmission and Distribution," Energies, MDPI, vol. 16(13), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5199-:d:1188082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Golombek, Rolf & Lind, Arne & Ringkjøb, Hans-Kristian & Seljom, Pernille, 2022. "The role of transmission and energy storage in European decarbonization towards 2050," Energy, Elsevier, vol. 239(PC).
    2. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    3. Chen, Siyuan & Li, Zheng & Li, Weiqi, 2021. "Integrating high share of renewable energy into power system using customer-sited energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Yuanyuan Wang & Zexu Yu & Zhenhai Dou & Mengmeng Qiao & Ye Zhao & Ruishuo Xie & Lianxin Liu, 2022. "Decentralized Coordination Dispatch Model Based on Chaotic Mutation Harris Hawks Optimization Algorithm," Energies, MDPI, vol. 15(10), pages 1-26, May.
    5. Fan, Shuai & Liu, Jiang & Wu, Qing & Cui, Mingjian & Zhou, Huan & He, Guangyu, 2020. "Optimal coordination of virtual power plant with photovoltaics and electric vehicles: A temporally coupled distributed online algorithm," Applied Energy, Elsevier, vol. 277(C).
    6. Kendall Mongird & Vilayanur Viswanathan & Patrick Balducci & Jan Alam & Vanshika Fotedar & Vladimir Koritarov & Boualem Hadjerioua, 2020. "An Evaluation of Energy Storage Cost and Performance Characteristics," Energies, MDPI, vol. 13(13), pages 1-53, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    2. Matthias Maldet & Daniel Schwabeneder & Georg Lettner & Christoph Loschan & Carlo Corinaldesi & Hans Auer, 2022. "Beyond Traditional Energy Sector Coupling: Conserving and Efficient Use of Local Resources," Sustainability, MDPI, vol. 14(12), pages 1-36, June.
    3. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    4. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    5. Biancardi, Andrea & Mendes, Carla & Staffell, Iain, 2024. "Battery electricity storage as both a complement and substitute for cross-border interconnection," Energy Policy, Elsevier, vol. 189(C).
    6. Xiao, Jucheng & He, Guangyu & Fan, Shuai & Zhang, Siyuan & Wu, Qing & Li, Zuyi, 2020. "Decentralized transfer of contingency reserve: Framework and methodology," Applied Energy, Elsevier, vol. 278(C).
    7. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
    8. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    10. Ren, Junzhi & Zeng, Yuan & Qin, Chao & Li, Bao & Wang, Ziqiang & Yuan, Quan & Zhai, Hefeng & Li, Peng, 2024. "Characterization and application of flexible operation region of virtual power plant," Applied Energy, Elsevier, vol. 371(C).
    11. Pompodakis, Evangelos E. & Kryonidis, Georgios C. & Karapidakis, Emmanuel S., 2023. "Volt/Var control and energy management in non-interconnected insular networks with multiple hybrid power plants," Applied Energy, Elsevier, vol. 331(C).
    12. McIlwaine, Neil & Foley, Aoife M. & Best, Robert & Morrow, D. John & Kez, Dlzar Al, 2023. "Modelling the effect of distributed battery energy storage in an isolated power system," Energy, Elsevier, vol. 263(PC).
    13. Dong, Lianxin & Fan, Shuai & Wang, Zhihua & Xiao, Jucheng & Zhou, Huan & Li, Zuyi & He, Guangyu, 2021. "An adaptive decentralized economic dispatch method for virtual power plant," Applied Energy, Elsevier, vol. 300(C).
    14. Ginevra Balletto & Mara Ladu & Federico Camerin & Emilio Ghiani & Jacopo Torriti, 2022. "More Circular City in the Energy and Ecological Transition: A Methodological Approach to Sustainable Urban Regeneration," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    15. Jun Dong & A-Ru-Han Bao & Yao Liu & Xi-Hao Dou & Dong-Ran Liu & Gui-Yuan Xue, 2022. "Dynamic Differential Game Strategy of the Energy Big Data Ecosystem Considering Technological Innovation," Sustainability, MDPI, vol. 14(12), pages 1-24, June.
    16. Qin, Yuxiao & Liu, Pei & Li, Zheng, 2022. "Multi-timescale hierarchical scheduling of an integrated energy system considering system inertia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    17. Seljom, Pernille & Rosenberg, Eva & Haaskjold, Kristina, 2024. "The effect and value of end-use flexibility in the low-carbon transition of the energy system," Energy, Elsevier, vol. 292(C).
    18. Fang, Guochang & Meng, Aoxiang & Wang, Qingling & Zhou, Huixin & Tian, Lixin, 2024. "Analysis of the evolution path of new energy system under polymorphic uncertainty—A case study of China," Energy, Elsevier, vol. 300(C).
    19. Jesús Fraile Ardanuy & Roberto Alvaro-Hermana & Sandra Castano-Solis & Julia Merino, 2022. "Carbon-Free Electricity Generation in Spain with PV–Storage Hybrid Systems," Energies, MDPI, vol. 15(13), pages 1-20, June.
    20. Thiti Jittayasotorn & Muthiah Sadidah & Takahiro Yoshida & Takuro Kobashi, 2023. "On the Adoption of Rooftop Photovoltaics Integrated with Electric Vehicles toward Sustainable Bangkok City, Thailand," Energies, MDPI, vol. 16(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5199-:d:1188082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.