IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p418-d130448.html
   My bibliography  Save this article

Economic and Emission Dispatch Using Ensemble Multi-Objective Differential Evolution Algorithm

Author

Listed:
  • Xiaobing Yu

    (Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
    School of Management and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Xianrui Yu

    (School of Management and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Yiqun Lu

    (School of Management and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Jichuan Sheng

    (Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
    School of Management and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

Abstract

In the past two decades, China’s manufacturing industry has achieved great success. However, pollution and environmental impacts have become more serious while this industry has grown. The economic and emission dispatch (EED) problem is a typical multi-objective optimization problem with conflicting fuel costs and pollution emission objectives. An ensemble multi-objective differential evolution (EMODE) is proposed to tackle the EED problem. First, the equality constraints of the problem have been transformed into inequality constraints. Next, two mutation strategies DE/rand/1 and DE/current-to-rand/1 have been implemented to improve the conventional DE. The performance of the proposed algorithm is evaluated on six test functions and the numerical results have indicated that the proposed algorithm is effective. The proposed algorithm EMODE is used to solve a series of six generators and eleven generators in the EED problem. The experimental results obtained are compared with those reported using single optimization algorithms and multi-objective evolutionary algorithms (MOEAs). The results have revealed that the proposed algorithm EMODE either matches or outperforms those algorithms. The proposed algorithm is an effective candidate to optimize the manufacturing industry of China.

Suggested Citation

  • Xiaobing Yu & Xianrui Yu & Yiqun Lu & Jichuan Sheng, 2018. "Economic and Emission Dispatch Using Ensemble Multi-Objective Differential Evolution Algorithm," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:418-:d:130448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toly Chen, 2016. "Competitive and Sustainable Manufacturing in the Age of Globalization," Sustainability, MDPI, vol. 9(1), pages 1-5, December.
    2. Xiaoqing Chen & Zaiwu Gong, 2017. "DEA Efficiency of Energy Consumption in China’s Manufacturing Sectors with Environmental Regulation Policy Constraints," Sustainability, MDPI, vol. 9(2), pages 1-19, February.
    3. Gong, Zaiwu & Xu, Xiaoxia & Zhang, Huanhuan & Aytun Ozturk, U. & Herrera-Viedma, Enrique & Xu, Chao, 2015. "The consensus models with interval preference opinions and their economic interpretation," Omega, Elsevier, vol. 55(C), pages 81-90.
    4. Xiaodong Zhu & Rongrong Gu & Bingbing Wu & Shunsuke Managi, 2017. "Does Hazy Weather Influence Earnings Management of Heavy-Polluting Enterprises? A Chinese Empirical Study from the Perspective of Negative Social Concerns," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    5. Zaiwu Gong & Xiaoqing Chen, 2017. "Analysis of Interval Data Envelopment Efficiency Model Considering Different Distribution Characteristics—Based on Environmental Performance Evaluation of the Manufacturing Industry," Sustainability, MDPI, vol. 9(12), pages 1-25, November.
    6. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    7. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    8. Xiong, Guojiang & Shi, Dongyuan & Duan, Xianzhong, 2013. "Multi-strategy ensemble biogeography-based optimization for economic dispatch problems," Applied Energy, Elsevier, vol. 111(C), pages 801-811.
    9. Ghasemi, Mojtaba & Aghaei, Jamshid & Akbari, Ebrahim & Ghavidel, Sahand & Li, Li, 2016. "A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems," Energy, Elsevier, vol. 107(C), pages 182-195.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail Marouani & Tawfik Guesmi & Hsan Hadj Abdallah & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Salem Rahmani, 2022. "Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review," Energies, MDPI, vol. 15(12), pages 1-35, June.
    2. Hossein Nourianfar & Hamdi Abdi, 2022. "Environmental/Economic Dispatch Using a New Hybridizing Algorithm Integrated with an Effective Constraint Handling Technique," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    3. Derong Lv & Guojiang Xiong & Xiaofan Fu & Yang Wu & Sheng Xu & Hao Chen, 2022. "Optimal Power Flow with Stochastic Solar Power Using Clustering-Based Multi-Objective Differential Evolution," Energies, MDPI, vol. 15(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianlong Wu & Zhongji Yang & Xiaobo Hu & Hongqi Wang & Jing Huang, 2018. "Exploring Driving Forces of Sustainable Development of China’s New Energy Vehicle Industry: An Analysis from the Perspective of an Innovation Ecosystem," Sustainability, MDPI, vol. 10(12), pages 1-24, December.
    2. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    3. Xiaoyang Zhou & Hao Chen & Hao Wang & Benjamin Lev & Lifang Quan, 2019. "Natural and Managerial Disposability Based DEA Model for China’s Regional Environmental Efficiency Assessment," Energies, MDPI, vol. 12(18), pages 1-20, September.
    4. Ali S. Alghamdi, 2022. "Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer for Solving Non-Convex Economic Load Dispatch Problems," Energies, MDPI, vol. 15(11), pages 1-19, May.
    5. Hui Li & Kangyin Dong & Renjin Sun & Jintao Yu & Jinhong Xu, 2017. "Sustainability Assessment of Refining Enterprises Using a DEA-Based Model," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    6. Ji Guo & Lei Zhou & Xianhua Wu, 2018. "Tendency of Embodied Carbon Change in the Export Trade of Chinese Manufacturing Industry from 2000 to 2015 and Its Driving Factors," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    7. Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    8. Fang, Lei, 2022. "Measuring and decomposing group performance under centralized management," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1006-1013.
    9. Junlong Li & Chuangneng Cai & Feng Zhang, 2020. "Assessment of Ecological Efficiency and Environmental Sustainability of the Minjiang-Source in China," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    10. Xi Yang & Xiaoqian Xi & Shan Guo & Wanqi Lin & Xiangzhao Feng, 2018. "Carbon Mitigation Pathway Evaluation and Environmental Benefit Analysis of Mitigation Technologies in China’s Petrochemical and Chemical Industry," Energies, MDPI, vol. 11(12), pages 1-25, November.
    11. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    12. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    13. Xilin Zhang & Yuejin Tan & Zhiwei Yang, 2018. "Rework Quantification and Influence of Rework on Duration and Cost of Equipment Development Task," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    14. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    15. Nadimi, Reza & Tokimatsu, Koji, 2019. "Potential energy saving via overall efficiency relying on quality of life," Applied Energy, Elsevier, vol. 233, pages 283-299.
    16. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah, 2015. "An efficient scenario-based stochastic programming for optimal planning of combined heat, power, and hydrogen production of molten carbonate fuel cell power plants," Energy, Elsevier, vol. 83(C), pages 734-748.
    17. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    18. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    19. Zhang, Guanglu & Lin, Boqiang, 2018. "Impact of structure on unified efficiency for Chinese service sector—A two-stage analysis," Applied Energy, Elsevier, vol. 231(C), pages 876-886.
    20. Yongrok Choi & Hyoungsuk Lee & Hojin Jeong & Jahira Debbarma, 2023. "Urbanization Paradox of Environmental Policies in Korean Local Governments," Land, MDPI, vol. 12(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:418-:d:130448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.