IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3815-d821259.html
   My bibliography  Save this article

Decentralized Coordination Dispatch Model Based on Chaotic Mutation Harris Hawks Optimization Algorithm

Author

Listed:
  • Yuanyuan Wang

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Zexu Yu

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Zhenhai Dou

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Mengmeng Qiao

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Ye Zhao

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Ruishuo Xie

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Lianxin Liu

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

Abstract

Aiming at the economic dispatch problem for an interconnected system with wind power integration, and in order to realize the goals of system economy and improvement of the cross-regional consumption level of wind energy, a decentralized coordination dispatch model is established in this paper. In this model, a DC tie-line is cut by the branch cutting method and used as a coupling variable. A virtual upper-level dispatch center is established, and the economic dispatch problem to be solved is decomposed into a master optimization problem for the upper-level dispatch center and subsidiary optimization problems for the lower-level dispatch centers. For solving this model, an improved Harris hawks optimization (HHO) algorithm called the chaotic mutation Harris hawks optimization (CMHHO) algorithm is proposed. In the CMHHO algorithm, tent mapping and the “DE/pbad-to-pbest/1” strategy are introduced, and a new nonlinear escape energy factor adjustment is proposed. Through an algorithm comparison experiment and a simulation experiment with two examples, the superiority of the CMHHO algorithm, the effectiveness of the proposed model and the applicability of the CMHHO algorithm to the proposed model are verified. The model proposed is of great significance for solving the economic dispatch problem for an interconnected system with wind power integration.

Suggested Citation

  • Yuanyuan Wang & Zexu Yu & Zhenhai Dou & Mengmeng Qiao & Ye Zhao & Ruishuo Xie & Lianxin Liu, 2022. "Decentralized Coordination Dispatch Model Based on Chaotic Mutation Harris Hawks Optimization Algorithm," Energies, MDPI, vol. 15(10), pages 1-26, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3815-:d:821259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3815/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3815/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yih-Der Lee & Wei-Chen Lin & Jheng-Lun Jiang & Jia-Hao Cai & Wei-Tzer Huang & Kai-Chao Yao, 2021. "Optimal Individual Phase Voltage Regulation Strategies in Active Distribution Networks with High PV Penetration Using the Sparrow Search Algorithm," Energies, MDPI, vol. 14(24), pages 1-22, December.
    2. Neelamsetti Kirn Kumar & Rahul Sanmugam Gopi & Ramya Kuppusamy & Srete Nikolovski & Yuvaraja Teekaraman & Indragandhi Vairavasundaram & Siripireddy Venkateswarulu, 2022. "Fuzzy Logic-Based Load Frequency Control in an Island Hybrid Power System Model Using Artificial Bee Colony Optimization," Energies, MDPI, vol. 15(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zekai Xu & Jinghan He & Zhao Liu & Zhiyi Zhao, 2023. "Collaborative Optimization of Transmission and Distribution Considering Energy Storage Systems on Both Sides of Transmission and Distribution," Energies, MDPI, vol. 16(13), pages 1-23, July.
    2. Abdulaziz Almalaq & Tawfik Guesmi & Saleh Albadran, 2023. "A Hybrid Chaotic-Based Multiobjective Differential Evolution Technique for Economic Emission Dispatch Problem," Energies, MDPI, vol. 16(12), pages 1-34, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takele Ferede Agajie & Armand Fopah-Lele & Ahmed Ali & Isaac Amoussou & Baseem Khan & Mahmoud Elsisi & Om Prakash Mahela & Roberto Marcelo Álvarez & Emmanuel Tanyi, 2023. "Optimal Sizing and Power System Control of Hybrid Solar PV-Biogas Generator with Energy Storage System Power Plant," Sustainability, MDPI, vol. 15(7), pages 1-26, March.
    2. Yu Fujimoto & Akihisa Kaneko & Yutaka Iino & Hideo Ishii & Yasuhiro Hayashi, 2023. "Challenges in Smartizing Operational Management of Functionally-Smart Inverters for Distributed Energy Resources: A Review on Machine Learning Aspects," Energies, MDPI, vol. 16(3), pages 1-26, January.
    3. Meena, V.P. & Singh, V.P. & Guerrero, Josep M., 2024. "Investigation of reciprocal rank method for automatic generation control in two-area interconnected power system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 760-778.
    4. Anju Yadav & Nand Kishor & Richa Negi, 2023. "Bus Voltage Violations under Different Solar Radiation Profiles and Load Changes with Optimally Placed and Sized PV Systems," Energies, MDPI, vol. 16(2), pages 1-23, January.
    5. Masoud Hamedi & Hossein Shayeghi & Seyedjalal Seyedshenava & Amin Safari & Abdollah Younesi & Nicu Bizon & Vasile-Gabriel Iana, 2023. "Developing an Integration of Smart-Inverter-Based Hosting-Capacity Enhancement in Dynamic Expansion Planning of PV-Penetrated LV Distribution Networks," Sustainability, MDPI, vol. 15(14), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3815-:d:821259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.