IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923013995.html
   My bibliography  Save this article

Aerodynamic rotor design for a 25 MW offshore downwind turbine

Author

Listed:
  • Jeong, Michael
  • Loth, Eric
  • Qin, Chris
  • Selig, Michael
  • Johnson, Nick

Abstract

Continuously increasing offshore wind turbine scales require rotor designs that maximize power and performance. Downwind rotors offer advantages in lower mass due to reduced potential for tower strike, and is especially true at large scales, e.g., for a 25 MW turbine. In this study, three 25 MW downwind rotors, each with different prescribed lift coefficient distributions were designed (chord, geometry, and twist) and compared to maximize power production at unprecedented scales and Reynolds numbers, including a new approach to optimize rotor tilt and coning based on aeroelastic effects. To achieve this objective the design process was focused on achieving high power coefficients, while maximizing swept area and minimizing blade mass. Maximizing swept area was achieved by prescribing pre-cone and shaft tilt angles to ensure the aeroelastic orientation when the blades point upwards was nearly vertical at nearly rated conditions. Maximizing the power coefficient was achieved by prescribing axial induction factor and lift coefficient distributions which were then used as inputs for an inverse rotor design tool. The resulting rotors were then simulated to compare performance and subsequently optimized for minimum rotor mass. To achieve these goals, a high Reynolds number design space was developed using computational predictions as well as new empirical correlations for flatback airfoil drag and maximum lift. Within this design space, three rotors of small, medium and large chords were considered for clean airfoil conditions (effects of premature transition were also considered but did not significantly modify the design space). The results indicated that the medium chord design provided the best performance, producing the highest power in Region 2 from simulations while resulting in the lowest rotor mass, both of which support minimum LCOE. The methodology developed herein can be used for the design of other extreme-scale (upwind and downwind) turbines.

Suggested Citation

  • Jeong, Michael & Loth, Eric & Qin, Chris & Selig, Michael & Johnson, Nick, 2024. "Aerodynamic rotor design for a 25 MW offshore downwind turbine," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013995
    DOI: 10.1016/j.apenergy.2023.122035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2020. "On the suitability of offshore wind energy resource in the United States of America for the 21st century," Applied Energy, Elsevier, vol. 262(C).
    2. Shields, Matt & Beiter, Philipp & Nunemaker, Jake & Cooperman, Aubryn & Duffy, Patrick, 2021. "Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind," Applied Energy, Elsevier, vol. 298(C).
    3. Caglayan, Dilara Gulcin & Ryberg, David Severin & Heinrichs, Heidi & Linßen, Jochen & Stolten, Detlef & Robinius, Martin, 2019. "The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pryor, Sara C. & Barthelmie, Rebecca J., 2024. "Wind shadows impact planning of large offshore wind farms," Applied Energy, Elsevier, vol. 359(C).
    2. Kikuchi, Yuka & Ishihara, Takeshi, 2023. "Assessment of capital expenditure for fixed-bottom offshore wind farms using probabilistic engineering cost model," Applied Energy, Elsevier, vol. 341(C).
    3. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    4. Farid Khazaeli Moghadam & Nils Desch, 2023. "Life Cycle Assessment of Various PMSG-Based Drivetrain Concepts for 15 MW Offshore Wind Turbines Applications," Energies, MDPI, vol. 16(3), pages 1-26, February.
    5. Wang, Huaizhi & Liu, Yangyang & Zhou, Bin & Voropai, Nikolai & Cao, Guangzhong & Jia, Youwei & Barakhtenko, Evgeny, 2020. "Advanced adaptive frequency support scheme for DFIG under cyber uncertainty," Renewable Energy, Elsevier, vol. 161(C), pages 98-109.
    6. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    7. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    8. Vu Dinh, Quang & Doan, Quang-Van & Ngo-Duc, Thanh & Nguyen Dinh, Van & Dinh Duc, Nguyen, 2022. "Offshore wind resource in the context of global climate change over a tropical area," Applied Energy, Elsevier, vol. 308(C).
    9. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    10. Ismail Kamdar & Shahid Ali & Juntakan Taweekun & Hafiz Muhammad Ali, 2021. "Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    11. de Faria, Victor A.D. & de Queiroz, Anderson R. & DeCarolis, Joseph F., 2022. "Optimizing offshore renewable portfolios under resource variability," Applied Energy, Elsevier, vol. 326(C).
    12. Rebecca J. Barthelmie & Gunner C. Larsen & Sara C. Pryor, 2023. "Modeling Annual Electricity Production and Levelized Cost of Energy from the US East Coast Offshore Wind Energy Lease Areas," Energies, MDPI, vol. 16(12), pages 1-29, June.
    13. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    14. Sofia Agostinelli & Fabrizio Cumo & Meysam Majidi Nezhad & Giuseppe Orsini & Giuseppe Piras, 2022. "Renewable Energy System Controlled by Open-Source Tools and Digital Twin Model: Zero Energy Port Area in Italy," Energies, MDPI, vol. 15(5), pages 1-24, March.
    15. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Benjamin Pakenham & Anna Ermakova & Ali Mehmanparast, 2021. "A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments," Energies, MDPI, vol. 14(7), pages 1-23, March.
    17. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    18. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Dupré la Tour, Marie-Alix, 2023. "Photovoltaic and wind energy potential in Europe – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    20. Eric Stefan Miele & Nicole Ludwig & Alessandro Corsini, 2023. "Multi-Horizon Wind Power Forecasting Using Multi-Modal Spatio-Temporal Neural Networks," Energies, MDPI, vol. 16(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.