IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124011108.html
   My bibliography  Save this article

Hybrid wind-solar energy potential modeling using ERA5 and solar irradiation data in google Earth Engine

Author

Listed:
  • Masoud, Alaa A.

Abstract

Renewable energies play a significant role in mitigating the climate change impacts. Wind and solar energy are projected to supply larger amount to the total renewable energy capacity of many nations. Long-term wind and solar data availability and analysis is vital for sustainable renewable energy farming. In this research, we analyze wind speed u- and v-components at 10 m height of the ERA5 daily reanalysis aggregates at a mesh of 31 Km during a long period (2010–2020) over the Red Sea and the Gulf of Suez coasts of Egypt. Google Earth Engine (GEE) code is developed and used for the analysis. The prime objective is to derive estimates on the spatio-temporal variability of speed, direction, and the wind energy estimates in the area. Further, the solar energy potential has been evaluated using reference data of the PVOUT – Photovoltaic power potential (kWh/m2/day) data, at nearly 1 km resolution, which is normalized at the evaluated sites, and then used to rank sites with their solar energy potential. Evaluation of estimates is carried out at selected thirteen sites distributed along the coasts to better understand the hybrid wind-solar energy potential. Frequency analysis is carried out to the wind speed spatial estimates to demarcate highest frequency wind events potential for wind farming. Reference in-situ wind speed observations available at daily and monthly time scales for Hurghada weather station is used for investigating the reanalysis data performance. The Hurghada site had the highest average wind speed (6.7 m s−1), frequency of events (75 %), and mean daily (60.4 kWh) and annual (22.02 MWh) wind energy. The windiest time intervals were the September month, 2017 year, and the summer season. The north had wind energy directions of 130°, while the south had 110°. Trend analysis showed declining trends for northern locations and rising yearly wind speed estimates for Berenice (0.005) and Halayeb (0.002). El-Tor location had the highest solar energy output, with a daily mean of 5.52 kWh/m2 and an annual mean of almost 2015 kWh/m2. The Hurghada, Jemsa, G. Zeit, and El-Tor sites achieved the highest rankings in terms of hybrid wind-solar energy potential. The results can be very valuable for optimal location of hybrid solar-wind energy facilities and provide viable and promising solutions for sustainably meeting Egypt's growing clean energy demands.

Suggested Citation

  • Masoud, Alaa A., 2024. "Hybrid wind-solar energy potential modeling using ERA5 and solar irradiation data in google Earth Engine," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011108
    DOI: 10.1016/j.renene.2024.121042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011108
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pinheiro Neto, Daywes & Domingues, Elder Geraldo & Coimbra, António Paulo & de Almeida, Aníbal Traça & Alves, Aylton José & Calixto, Wesley Pacheco, 2017. "Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil," Energy Economics, Elsevier, vol. 64(C), pages 238-250.
    2. David L. McCollum & Wenji Zhou & Christoph Bertram & Harmen-Sytze Boer & Valentina Bosetti & Sebastian Busch & Jacques Després & Laurent Drouet & Johannes Emmerling & Marianne Fay & Oliver Fricko & Sh, 2018. "Author Correction: Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy, Nature, vol. 3(8), pages 699-699, August.
    3. David Barbosa de Alencar & Carolina De Mattos Affonso & Roberto Célio Limão de Oliveira & Jorge Laureano Moya Rodríguez & Jandecy Cabral Leite & José Carlos Reston Filho, 2017. "Different Models for Forecasting Wind Power Generation: Case Study," Energies, MDPI, vol. 10(12), pages 1-27, November.
    4. Giovanni Gualtieri, 2021. "Reliability of ERA5 Reanalysis Data for Wind Resource Assessment: A Comparison against Tall Towers," Energies, MDPI, vol. 14(14), pages 1-21, July.
    5. Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.
    6. Dabbaghiyan, Amir & Fazelpour, Farivar & Abnavi, Mohhamadreza Dehghan & Rosen, Marc A., 2016. "Evaluation of wind energy potential in province of Bushehr, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 455-466.
    7. David L. McCollum & Wenji Zhou & Christoph Bertram & Harmen-Sytze Boer & Valentina Bosetti & Sebastian Busch & Jacques Després & Laurent Drouet & Johannes Emmerling & Marianne Fay & Oliver Fricko & Sh, 2018. "Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy, Nature, vol. 3(7), pages 589-599, July.
    8. Zhang, Hua & Yu, Yong-Jing & Liu, Zhi-Yuan, 2014. "Study on the Maximum Entropy Principle applied to the annual wind speed probability distribution: A case study for observations of intertidal zone anemometer towers of Rudong in East China Sea," Applied Energy, Elsevier, vol. 114(C), pages 931-938.
    9. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    10. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    11. Shields, Matt & Beiter, Philipp & Nunemaker, Jake & Cooperman, Aubryn & Duffy, Patrick, 2021. "Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind," Applied Energy, Elsevier, vol. 298(C).
    12. Han, Qinkai & Chu, Fulei, 2021. "Directional wind energy assessment of China based on nonparametric copula models," Renewable Energy, Elsevier, vol. 164(C), pages 1334-1349.
    13. S. E. Lester & J. M. Stevens & R. R. Gentry & C. V. Kappel & T. W. Bell & C. J. Costello & S. D. Gaines & D. A. Kiefer & C. C. Maue & J. E. Rensel & R. D. Simons & L. Washburn & C. White, 2018. "Marine spatial planning makes room for offshore aquaculture in crowded coastal waters," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    14. Song, Dongran & Li, Ziqun & Wang, Lei & Jin, Fangjun & Huang, Chaoneng & Xia, E. & Rizk-Allah, Rizk M. & Yang, Jian & Su, Mei & Joo, Young Hoon, 2022. "Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation," Applied Energy, Elsevier, vol. 312(C).
    15. Shriki, Noam & Rabinovici, Raul & Yahav, Kobi & Rubin, Ofir, 2023. "Prioritizing suitable locations for national-scale solar PV installations: Israel's site suitability analysis as a case study," Renewable Energy, Elsevier, vol. 205(C), pages 105-124.
    16. Agustín Sánchez-del Rey & Isabel Cristina Gil-García & María Socorro García-Cascales & Ángel Molina-García, 2022. "Online Wind-Atlas Databases and GIS Tool Integration for Wind Resource Assessment: A Spanish Case Study," Energies, MDPI, vol. 15(3), pages 1-26, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    2. Zhang, Mingming & Song, Wenwen & Liu, Liyun & Zhou, Dequn, 2024. "Optimal investment portfolio strategy for carbon neutrality of power enterprises," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Gumber, Anurag & Zana, Riccardo & Steffen, Bjarne, 2024. "A global analysis of renewable energy project commissioning timelines," Applied Energy, Elsevier, vol. 358(C).
    4. Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
    5. Joëlle Noailly & Roger Smeets, 2022. "Financing Energy Innovation: Internal Finance and the Direction of Technical Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 145-169, September.
    6. Wu, Qingyang & Wang, Yanying, 2022. "How does carbon emission price stimulate enterprises' total factor productivity? Insights from China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 109(C).
    7. Marco Due~nas & Antoine Mandel, 2024. "Are EU low-carbon structural funds efficient in reducing emissions?," Papers 2408.01782, arXiv.org.
    8. Thomas Baldauf & Patrick Jochem, 2024. "Project finance or corporate finance for renewable energy? an agent-based insight," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 19(4), pages 759-805, October.
    9. Yu, Bolin & Fang, Debin & Xiao, Kun & Pan, Yuling, 2023. "Drivers of renewable energy penetration and its role in power sector's deep decarbonization towards carbon peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    10. Tommy Chrimes & Bram Gootjes & M. Ayhan Kose & Collette Wheeler, 2024. "The Great Reversal," World Bank Publications - Books, The World Bank Group, number 41403.
    11. Perdana, Sigit & Vielle, Marc, 2022. "Making the EU Carbon Border Adjustment Mechanism acceptable and climate friendly for least developed countries," Energy Policy, Elsevier, vol. 170(C).
    12. Qian Zhang & Christopher Kennedy & Tao Wang & Wendong Wei & Jiashuo Li & Lei Shi, 2020. "Transforming the coal and steel nexus for China's eco‐civilization: Interplay between rail and energy infrastructure," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1352-1363, December.
    13. Zohra Dradra & Chokri Abdennadher, 2023. "Modeling the effects of renewable energy on sustainable development: evidence from simultaneous equations models," Economic Change and Restructuring, Springer, vol. 56(4), pages 2111-2128, August.
    14. Dafermos, Yannis & Nikolaidi, Maria, 2021. "How can green differentiated capital requirements affect climate risks? A dynamic macrofinancial analysis," Journal of Financial Stability, Elsevier, vol. 54(C).
    15. Laura Cavalli & Mia Alibegovic & Edward Cruickshank & Luca Farnia & Ilenia G. Romani, 2023. "The impact of EU Structural Funds on the national sustainable development strategy: a methodological application," Regional Studies, Regional Science, Taylor & Francis Journals, vol. 10(1), pages 52-69, December.
    16. Naoyuki Yoshino & Tim Schloesser & Farhad Taghizadeh‐Hesary, 2021. "Social funding of green financing: An application of distributed ledger technologies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 6060-6073, October.
    17. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    18. Fei Guo & Bas J. Ruijven & Behnam Zakeri & Shining Zhang & Xing Chen & Changyi Liu & Fang Yang & Volker Krey & Keywan Riahi & Han Huang & Yuanbing Zhou, 2022. "Implications of intercontinental renewable electricity trade for energy systems and emissions," Nature Energy, Nature, vol. 7(12), pages 1144-1156, December.
    19. Joelle Noailly; Roger Smeets, 2021. "Financing Energy Innovation: Internal Finance and the Direction of Technical Change," CIES Research Paper series 69-2021, Centre for International Environmental Studies, The Graduate Institute.
    20. Hayot Berk Saydaliev & Lee Chin, 2023. "Role of green financing and financial inclusion to develop the cleaner environment for macroeconomic stability: Inter-temporal analysis of ASEAN economies," Economic Change and Restructuring, Springer, vol. 56(6), pages 3839-3859, December.

    More about this item

    Keywords

    ERA5 wind speed; GEE; Sen's slope; Gulf of Suez; Red sea; Egypt;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.