Enhancing Hydrogen Production from Biogas through Catalyst Rearrangements
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
- Robert Kaczmarczyk, 2021. "Thermodynamic Analysis of the Effect of Green Hydrogen Addition to a Fuel Mixture on the Steam Methane Reforming Process," Energies, MDPI, vol. 14(20), pages 1-14, October.
- Arslan Mazhar & Asif Hussain Khoja & Abul Kalam Azad & Faisal Mushtaq & Salman Raza Naqvi & Sehar Shakir & Muhammad Hassan & Rabia Liaquat & Mustafa Anwar, 2021. "Performance Analysis of TiO 2 -Modified Co/MgAl 2 O 4 Catalyst for Dry Reforming of Methane in a Fixed Bed Reactor for Syngas (H 2 , CO) Production," Energies, MDPI, vol. 14(11), pages 1-20, June.
- Liobikienė, Genovaitė & Dagiliūtė, Renata, 2021. "Do positive aspects of renewable energy contribute to the willingness to pay more for green energy?," Energy, Elsevier, vol. 231(C).
- Marcin Pajak & Grzegorz Brus & Janusz S. Szmyd, 2021. "Catalyst Distribution Optimization Scheme for Effective Green Hydrogen Production from Biogas Reforming," Energies, MDPI, vol. 14(17), pages 1-14, September.
- Arturo de Risi & Gianpiero Colangelo & Marco Milanese, 2023. "Advanced Technologies for Green Hydrogen Production," Energies, MDPI, vol. 16(6), pages 1-4, March.
- Iwai, H. & Yamamoto, Y. & Saito, M. & Yoshida, H., 2011. "Numerical simulation of intermediate-temperature direct-internal-reforming planar solid oxide fuel cell," Energy, Elsevier, vol. 36(4), pages 2225-2234.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zofia Pizoń & Shinji Kimijima & Grzegorz Brus, 2024. "Enhancing a Deep Learning Model for the Steam Reforming Process Using Data Augmentation Techniques," Energies, MDPI, vol. 17(10), pages 1-15, May.
- Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marcin Pajak & Grzegorz Brus & Janusz S. Szmyd, 2021. "Catalyst Distribution Optimization Scheme for Effective Green Hydrogen Production from Biogas Reforming," Energies, MDPI, vol. 14(17), pages 1-14, September.
- Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
- Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
- Robert Kaczmarczyk, 2021. "Thermodynamic Analysis of the Effect of Green Hydrogen Addition to a Fuel Mixture on the Steam Methane Reforming Process," Energies, MDPI, vol. 14(20), pages 1-14, October.
- Vladislav Sadykov, 2023. "Advances in Hydrogen and Syngas Generation," Energies, MDPI, vol. 16(7), pages 1-4, March.
- He, Zhongjie & Birgersson, E. & Li, Hua, 2014. "Reduced non-isothermal model for the planar solid oxide fuel cell and stack," Energy, Elsevier, vol. 70(C), pages 478-492.
- Hong, Sung Kook & Dong, Sang Keun & Han, Jeong Ok & Lee, Joong Seong & Lee, Young Chul, 2013. "Numerical study of effect of operating and design parameters for design of steam reforming reactor," Energy, Elsevier, vol. 61(C), pages 410-418.
- Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
- Jiang, Rui & Wu, Peng & Song, Yongze & Wu, Chengke & Wang, Peng & Zhong, Yun, 2022. "Factors influencing the adoption of renewable energy in the U.S. residential sector: An optimal parameters-based geographical detector approach," Renewable Energy, Elsevier, vol. 201(P1), pages 450-461.
- Khazaee, I. & Rava, A., 2017. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries," Energy, Elsevier, vol. 119(C), pages 235-244.
- Aleksandra Kuzior & Alla Lobanova & Liudmyla Kalashnikova, 2021. "Green Energy in Ukraine: State, Public Demands, and Trends," Energies, MDPI, vol. 14(22), pages 1-14, November.
- Jamey Davies & Stephanus P. Du Preez & Dmitri G. Bessarabov, 2022. "The Hydrolysis of Ball-Milled Aluminum–Bismuth–Nickel Composites for On-Demand Hydrogen Generation," Energies, MDPI, vol. 15(7), pages 1-22, March.
- Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
- Dang, Zheng & Xu, Han, 2016. "Pore scale investigation of gaseous mixture flow in porous anode of solid oxide fuel cell," Energy, Elsevier, vol. 107(C), pages 295-304.
- Ahmad, Munir & Khan, Irfan & Shahzad Khan, Muhammad Qaiser & Jabeen, Gul & Jabeen, Hafiza Samra & Işık, Cem, 2023. "Households' perception-based factors influencing biogas adoption: Innovation diffusion framework," Energy, Elsevier, vol. 263(PE).
- Wang, Ligang & Rao, Megha & Diethelm, Stefan & Lin, Tzu-En & Zhang, Hanfei & Hagen, Anke & Maréchal, François & Van herle, Jan, 2019. "Power-to-methane via co-electrolysis of H2O and CO2: The effects of pressurized operation and internal methanation," Applied Energy, Elsevier, vol. 250(C), pages 1432-1445.
- Slippey, Andrew & Madani, Omid & Nishtala, Kalyan & Das, Tuhin, 2015. "Invariant properties of solid oxide fuel cell systems with integrated reformers," Energy, Elsevier, vol. 90(P1), pages 452-463.
- Lee, Sanghyeok & Park, Mansoo & Kim, Hyoungchul & Yoon, Kyung Joong & Son, Ji-Won & Lee, Jong-Ho & Kim, Byung-Kook & Choi, Wonjoon & Hong, Jongsup, 2017. "Thermal conditions and heat transfer characteristics of high-temperature solid oxide fuel cells investigated by three-dimensional numerical simulations," Energy, Elsevier, vol. 120(C), pages 293-305.
- Brown, Marilyn A. & Kale, Snehal & Cha, Min-Kyeong & Chapman, Oliver, 2023. "Exploring the willingness of consumers to electrify their homes," Applied Energy, Elsevier, vol. 338(C).
- Paula Carroll, 2022. "Gender Mainstreaming the European Union Energy Transition," Energies, MDPI, vol. 15(21), pages 1-16, October.
More about this item
Keywords
biogas reforming; green hydrogen; genetic algorithms; design optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4058-:d:1145747. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.