Enhancing a Deep Learning Model for the Steam Reforming Process Using Data Augmentation Techniques
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Marcin Pajak & Grzegorz Brus & Shinji Kimijima & Janusz S. Szmyd, 2023. "Enhancing Hydrogen Production from Biogas through Catalyst Rearrangements," Energies, MDPI, vol. 16(10), pages 1-21, May.
- Wang, Yang & Wu, Chengru & Zhao, Siyuan & Wang, Jian & Zu, Bingfeng & Han, Minfang & Du, Qing & Ni, Meng & Jiao, Kui, 2022. "Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell," Applied Energy, Elsevier, vol. 315(C).
- Vo, Nguyen Dat & Oh, Dong Hoon & Hong, Suk-Hoon & Oh, Min & Lee, Chang-Ha, 2019. "Combined approach using mathematical modelling and artificial neural network for chemical industries: Steam methane reformer," Applied Energy, Elsevier, vol. 255(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
- Pourali, Mostafa & Esfahani, Javad Abolfazli, 2022. "Performance analysis of a micro-scale integrated hydrogen production system by analytical approach, machine learning, and response surface methodology," Energy, Elsevier, vol. 255(C).
- Konstantinos Mira & Francesca Bugiotti & Tatiana Morosuk, 2023. "Artificial Intelligence and Machine Learning in Energy Conversion and Management," Energies, MDPI, vol. 16(23), pages 1-36, November.
- Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
- Fu, Quanrong & Tian, Chunyu & Hun, Lianming & Wang, Xin & Li, Zhiyi & Liu, Zhijun & Wei, Wei, 2024. "Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization," Energy, Elsevier, vol. 289(C).
- Vo, Nguyen Dat & Oh, Dong Hoon & Kang, Jun-Ho & Oh, Min & Lee, Chang-Ha, 2020. "Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas," Applied Energy, Elsevier, vol. 273(C).
- Yuan, Yi & Ding, Tao & Chang, Xinyue & Jia, Wenhao & Xue, Yixun, 2024. "A distributed multi-objective optimization method for scheduling of integrated electricity and hydrogen systems," Applied Energy, Elsevier, vol. 355(C).
- Gong, Chengyuan & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel flow field design with flow re-distribution for advanced thermal management in Solid oxide fuel cell," Applied Energy, Elsevier, vol. 331(C).
- Li, Zheng & Yu, Jie & Wang, Chen & Bello, Idris Temitope & Yu, Na & Chen, Xi & Zheng, Keqing & Han, Minfang & Ni, Meng, 2024. "Multi-objective optimization of protonic ceramic electrolysis cells based on a deep neural network surrogate model," Applied Energy, Elsevier, vol. 365(C).
- Konrad Gac & Grzegorz Góra & Maciej Petko & Joanna Iwaniec & Adam Martowicz & Artur Kowalski, 2023. "Modelling of Automated Store Energy Consumption," Energies, MDPI, vol. 16(24), pages 1-23, December.
- Zhang, Chao & Shen, Yuanhui & Zhang, Donghui & Tang, Zhongli & Li, Wenbin, 2022. "Vacuum pressure swing adsorption for producing fuel cell grade hydrogen from IGCC," Energy, Elsevier, vol. 257(C).
- Zhang, Zhiwei & Vo, Dat-Nguyen & Nguyen, Tuan B.H. & Sun, Jinsheng & Lee, Chang-Ha, 2024. "Advanced process integration and machine learning-based optimization to enhance techno-economic-environmental performance of CO2 capture and conversion to methanol," Energy, Elsevier, vol. 293(C).
More about this item
Keywords
methane steam reforming; hydrogen; deep learning; reaction kinetics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2413-:d:1396655. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.