IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2413-d1396655.html
   My bibliography  Save this article

Enhancing a Deep Learning Model for the Steam Reforming Process Using Data Augmentation Techniques

Author

Listed:
  • Zofia Pizoń

    (Department of Fundamental Research in Energy Engineering, Faculty of Energy and Fuel, AGH University of Krakow, 30059 Mickiewicza Ave., 30-059 Krakow, Poland)

  • Shinji Kimijima

    (Department of Machinery and Control Systems, Faculty of Mechanical Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan)

  • Grzegorz Brus

    (Department of Fundamental Research in Energy Engineering, Faculty of Energy and Fuel, AGH University of Krakow, 30059 Mickiewicza Ave., 30-059 Krakow, Poland)

Abstract

Methane steam reforming is the foremost method for hydrogen production, and it has been studied through experiments and diverse computational models to enhance its energy efficiency. This study focuses on employing an artificial neural network as a model of the methane steam reforming process. The proposed data-driven model predicts the output mixture’s composition based on reactor operating conditions, such as the temperature, steam-to-methane ratio, nitrogen-to-methane ratio, methane flow, and nickel catalyst mass. The network, a feedforward type, underwent training with a comprehensive dataset augmentation strategy that augments the primary experimental dataset through interpolation and theoretical simulations of the process, ensuring a robust model training phase. Additionally, it introduces weights to evaluate the relative significance of different data categories (experimental, interpolated, and theoretical) within the dataset. The optimal artificial neural network architecture was determined by evaluating various configurations, with the aim of minimizing the mean squared error (0.00022) and maximizing the Pearson correlation coefficient (0.97) and Spearman correlation coefficient (1.00).

Suggested Citation

  • Zofia Pizoń & Shinji Kimijima & Grzegorz Brus, 2024. "Enhancing a Deep Learning Model for the Steam Reforming Process Using Data Augmentation Techniques," Energies, MDPI, vol. 17(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2413-:d:1396655
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcin Pajak & Grzegorz Brus & Shinji Kimijima & Janusz S. Szmyd, 2023. "Enhancing Hydrogen Production from Biogas through Catalyst Rearrangements," Energies, MDPI, vol. 16(10), pages 1-21, May.
    2. Wang, Yang & Wu, Chengru & Zhao, Siyuan & Wang, Jian & Zu, Bingfeng & Han, Minfang & Du, Qing & Ni, Meng & Jiao, Kui, 2022. "Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell," Applied Energy, Elsevier, vol. 315(C).
    3. Vo, Nguyen Dat & Oh, Dong Hoon & Hong, Suk-Hoon & Oh, Min & Lee, Chang-Ha, 2019. "Combined approach using mathematical modelling and artificial neural network for chemical industries: Steam methane reformer," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    2. Pourali, Mostafa & Esfahani, Javad Abolfazli, 2022. "Performance analysis of a micro-scale integrated hydrogen production system by analytical approach, machine learning, and response surface methodology," Energy, Elsevier, vol. 255(C).
    3. Konstantinos Mira & Francesca Bugiotti & Tatiana Morosuk, 2023. "Artificial Intelligence and Machine Learning in Energy Conversion and Management," Energies, MDPI, vol. 16(23), pages 1-36, November.
    4. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    5. Fu, Quanrong & Tian, Chunyu & Hun, Lianming & Wang, Xin & Li, Zhiyi & Liu, Zhijun & Wei, Wei, 2024. "Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization," Energy, Elsevier, vol. 289(C).
    6. Vo, Nguyen Dat & Oh, Dong Hoon & Kang, Jun-Ho & Oh, Min & Lee, Chang-Ha, 2020. "Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas," Applied Energy, Elsevier, vol. 273(C).
    7. Yuan, Yi & Ding, Tao & Chang, Xinyue & Jia, Wenhao & Xue, Yixun, 2024. "A distributed multi-objective optimization method for scheduling of integrated electricity and hydrogen systems," Applied Energy, Elsevier, vol. 355(C).
    8. Gong, Chengyuan & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel flow field design with flow re-distribution for advanced thermal management in Solid oxide fuel cell," Applied Energy, Elsevier, vol. 331(C).
    9. Li, Zheng & Yu, Jie & Wang, Chen & Bello, Idris Temitope & Yu, Na & Chen, Xi & Zheng, Keqing & Han, Minfang & Ni, Meng, 2024. "Multi-objective optimization of protonic ceramic electrolysis cells based on a deep neural network surrogate model," Applied Energy, Elsevier, vol. 365(C).
    10. Konrad Gac & Grzegorz Góra & Maciej Petko & Joanna Iwaniec & Adam Martowicz & Artur Kowalski, 2023. "Modelling of Automated Store Energy Consumption," Energies, MDPI, vol. 16(24), pages 1-23, December.
    11. Zhang, Chao & Shen, Yuanhui & Zhang, Donghui & Tang, Zhongli & Li, Wenbin, 2022. "Vacuum pressure swing adsorption for producing fuel cell grade hydrogen from IGCC," Energy, Elsevier, vol. 257(C).
    12. Zhang, Zhiwei & Vo, Dat-Nguyen & Nguyen, Tuan B.H. & Sun, Jinsheng & Lee, Chang-Ha, 2024. "Advanced process integration and machine learning-based optimization to enhance techno-economic-environmental performance of CO2 capture and conversion to methanol," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2413-:d:1396655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.