IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3451-d811531.html
   My bibliography  Save this article

New Method to Determine the Dynamic Fluid Flow Rate at the Gear Pump Outlet

Author

Listed:
  • Valeriy Sanchugov

    (Institute of Machine Acoustics, Samara National Research University, 443086 Samara, Russia)

  • Pavel Rekadze

    (Institute of Machine Acoustics, Samara National Research University, 443086 Samara, Russia)

Abstract

External gear pumps are among the most popular fluid power positive displacement pumps; however, they often suffer from excessive flow pulsation transmitted to the downstream circuit. To meet the increasing demand of quiet operation for modern fluid power systems, it is necessary to give a physically sound method of analyzing the operation of a volumetric pump. The analysis of the basic approach used by the majority of researchers for calculating the flow rate of a gear pump by E.M. Yudin is presented. The article presents a new method for analyzing the operation of volumetric pumps. The method is suitable for the pumps whose dynamic characteristics should be considered according to the model of an equivalent source of flow fluctuations by V.P. Shorin. The method is based on wave theory, the method of hydrodynamic analogies and the impedance method, where the pump is considered according to the model in lumped parameters. The method consists in determining the pressure pulsations at the pump output in bench systems with known dynamic characteristics and recalculating the pump flow rate in pulsations. Computational dynamic models of bench systems in lumped parameters are proposed for subsequent use in dynamic tests of pumps in the form of equivalent sources of fluid flow fluctuations. We give recommendations for the formation of test bench systems with a throttle, a cavity and a pipeline at the pump output. Using the example of an external gear pump with a working volume of 14 cm 3 /rev, the implementation of the proposed method is considered. The pump’s own pulsation characteristic of the flow rate in a bench system with an “infinitely long” pipeline along two harmonic components of the spectrum is determined, and a test of the method based on the method of determining the instantaneous flow rate by R.N. Starobinskiy is proposed. It is shown that, according to the proposed method and the method of R.N. Starobinskiy, the divergence of the amplitudes of flow pulsations does not exceed (5–10)%. The high degree of coincidence of the results confirms that the external gear pump in question should be considered according to the equivalent source of flow fluctuations model.

Suggested Citation

  • Valeriy Sanchugov & Pavel Rekadze, 2022. "New Method to Determine the Dynamic Fluid Flow Rate at the Gear Pump Outlet," Energies, MDPI, vol. 15(9), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3451-:d:811531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gianluca Marinaro & Emma Frosina & Adolfo Senatore, 2021. "A Numerical Analysis of an Innovative Flow Ripple Reduction Method for External Gear Pumps," Energies, MDPI, vol. 14(2), pages 1-22, January.
    2. Massimo Rundo, 2017. "Models for Flow Rate Simulation in Gear Pumps: A Review," Energies, MDPI, vol. 10(9), pages 1-32, August.
    3. Xinran Zhao & Andrea Vacca, 2019. "Theoretical Investigation into the Ripple Source of External Gear Pumps," Energies, MDPI, vol. 12(3), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Ferrari & Paola Fresia & Massimo Rundo & Oscar Vento & Pietro Pizzo, 2022. "Experimental Measurement and Numerical Validation of the Flow Ripple in Internal Gear Pumps," Energies, MDPI, vol. 15(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miquel Torrent & Pedro Javier Gamez-Montero & Esteban Codina, 2021. "Parameterization, Modeling, and Validation in Real Conditions of an External Gear Pump," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    2. Pedro Javier Gamez-Montero & Ernest Bernat-Maso, 2022. "Taguchi Techniques as an Effective Simulation-Based Strategy in the Design of Numerical Simulations to Assess Contact Stress in Gerotor Pumps," Energies, MDPI, vol. 15(19), pages 1-24, September.
    3. Barbara Zardin & Emiliano Natali & Massimo Borghi, 2019. "Evaluation of the Hydro—Mechanical Efficiency of External Gear Pumps," Energies, MDPI, vol. 12(13), pages 1-19, June.
    4. Pedro Javier Gamez-Montero & Esteve Codina & Robert Castilla, 2019. "A Review of Gerotor Technology in Hydraulic Machines," Energies, MDPI, vol. 12(12), pages 1-44, June.
    5. Massimo Rundo & Giorgio Altare & Paolo Casoli, 2019. "Simulation of the Filling Capability in Vane Pumps," Energies, MDPI, vol. 12(2), pages 1-18, January.
    6. Yu Dai & Feiyue Ma & Xiang Zhu & Qiao Su & Xiaozhou Hu, 2019. "Evaluation and Optimization of the Oil Jet Lubrication Performance for Orthogonal Face Gear Drive: Modelling, Simulation and Experimental Validation," Energies, MDPI, vol. 12(10), pages 1-23, May.
    7. Jakub Milan Hradecký & Antonín Bubák & Martin Dub, 2022. "Evaluation Methodology of Rotary Flow Dividers Used as Pressure Intensifiers with Creation of a New Pressure Multiplying Efficiency," Energies, MDPI, vol. 15(6), pages 1-14, March.
    8. Paolo Casoli & Carlo Maria Vescovini & Massimo Rundo, 2023. "One-Dimensional Fluid Dynamic Modeling of a Gas Bladder Hydraulic Damper for Pump Flow Pulsation," Energies, MDPI, vol. 16(8), pages 1-18, April.
    9. Gabriele Muzzioli & Luca Montorsi & Andrea Polito & Andrea Lucchi & Alessandro Sassi & Massimo Milani, 2021. "About the Influence of Eco-Friendly Fluids on the Performance of an External Gear Pump," Energies, MDPI, vol. 14(4), pages 1-26, February.
    10. Alessandro Corvaglia & Massimo Rundo & Paolo Casoli & Antonio Lettini, 2021. "Evaluation of Tooth Space Pressure and Incomplete Filling in External Gear Pumps by Means of Three-Dimensional CFD Simulations," Energies, MDPI, vol. 14(2), pages 1-16, January.
    11. Hirokami, Arata & Heshmat, Samia & Tomioka, Satoshi, 2021. "Accurate numerical method to solve flux distribution of Poisson’s equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 329-342.
    12. Thomas Lobsinger & Timm Hieronymus & Hubert Schwarze & Gunther Brenner, 2021. "A CFD-Based Comparison of Different Positive Displacement Pumps for Application in Future Automatic Transmission Systems," Energies, MDPI, vol. 14(9), pages 1-24, April.
    13. Ionuţ Gabriel Ghionea, 2022. "Applied Methodology for Designing and Calculating a Family of Spur Gear Pumps," Energies, MDPI, vol. 15(12), pages 1-19, June.
    14. Jakub Milan Hradecký, 2023. "Description of Pressure-Multiplying Efficiency Model Creation Used for Pressure Intensifiers Based on Rotary Flow Dividers," Energies, MDPI, vol. 16(10), pages 1-21, May.
    15. Gianluca Marinaro & Emma Frosina & Adolfo Senatore, 2021. "A Numerical Analysis of an Innovative Flow Ripple Reduction Method for External Gear Pumps," Energies, MDPI, vol. 14(2), pages 1-22, January.
    16. Sangbeom Woo & Andrea Vacca, 2022. "An Investigation of the Vibration Modes of an External Gear Pump through Experiments and Numerical Modeling," Energies, MDPI, vol. 15(3), pages 1-22, January.
    17. Alessandro Ferrari & Paola Fresia & Massimo Rundo & Oscar Vento & Pietro Pizzo, 2022. "Experimental Measurement and Numerical Validation of the Flow Ripple in Internal Gear Pumps," Energies, MDPI, vol. 15(24), pages 1-15, December.
    18. Miquel Torrent & Pedro Javier Gamez-Montero & Esteban Codina, 2021. "Model of the Floating Bearing Bushing Movement in an External Gear Pump and the Relation to Its Parameterization," Energies, MDPI, vol. 14(24), pages 1-23, December.
    19. Puliti, Marco & Galluzzi, Renato & Tessari, Federico & Amati, Nicola & Tonoli, Andrea, 2024. "Energy efficient design of regenerative shock absorbers for automotive suspensions: A multi-objective optimization framework," Applied Energy, Elsevier, vol. 358(C).
    20. Paolo Casoli & Carlo Maria Vescovini & Fabio Scolari & Massimo Rundo, 2022. "Theoretical Analysis of Active Flow Ripple Control in Positive Displacement Pumps," Energies, MDPI, vol. 15(13), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3451-:d:811531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.