IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p796-d730832.html
   My bibliography  Save this article

An Investigation of the Vibration Modes of an External Gear Pump through Experiments and Numerical Modeling

Author

Listed:
  • Sangbeom Woo

    (Maha Fluid Power Research Center, Purdue University, 1500 Kepner Dr., Lafayette, IN 47905, USA)

  • Andrea Vacca

    (Maha Fluid Power Research Center, Purdue University, 1500 Kepner Dr., Lafayette, IN 47905, USA)

Abstract

This paper presents an experimental and numerical modal analysis for an external gear pump considering its mounting on a test rig in a laboratory setting. Most of the previous studies on experimental modal analysis (EMA) of hydraulic pumps focused on the modal frequencies to allow model validation. However, the mode shapes of pump bodies have not extensively been discussed. Furthermore, the nature of the pump components assembly and mounting poses some modeling challenges, such as the uncertain material properties of each component, the behavior of the bolted joints, and some critical modeling boundary conditions related to pump mounting. In this regard, the experimentally obtained vibration modes of a reference pump using the least-square complex exponential (LSCE) method are analyzed with an emphasis on the characteristics of the mode shapes. Then, simple modeling strategies are proposed and validated by performing the analysis from the component level to the full assembly. As a result, the mode shapes are categorized depending on the type of motions that the modes exhibit. It is observed that the pump casing does not show any substantial deformation but is close to the rigid body motion. Moreover, without considerably increasing model complexities, the proposed numerical approach provides reasonable accuracy with average errors in modal frequencies of 6%, as well as good agreement in terms of mode shapes. The vibration reduction strategy is briefly discussed based on the measured mode shapes, and the proposed modeling approaches can be useful to study external gear pumps with minimal model complexities yet allowing reasonable result accuracy.

Suggested Citation

  • Sangbeom Woo & Andrea Vacca, 2022. "An Investigation of the Vibration Modes of an External Gear Pump through Experiments and Numerical Modeling," Energies, MDPI, vol. 15(3), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:796-:d:730832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xinran Zhao & Andrea Vacca, 2019. "Theoretical Investigation into the Ripple Source of External Gear Pumps," Energies, MDPI, vol. 12(3), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fábio Antônio do Nascimento Setúbal & Sérgio de Souza Custódio Filho & Newton Sure Soeiro & Alexandre Luiz Amarante Mesquita & Marcus Vinicius Alves Nunes, 2022. "Force Identification from Vibration Data by Response Surface and Random Forest Regression Algorithms," Energies, MDPI, vol. 15(10), pages 1-15, May.
    2. Ionuţ Gabriel Ghionea, 2022. "Applied Methodology for Designing and Calculating a Family of Spur Gear Pumps," Energies, MDPI, vol. 15(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeriy Sanchugov & Pavel Rekadze, 2022. "New Method to Determine the Dynamic Fluid Flow Rate at the Gear Pump Outlet," Energies, MDPI, vol. 15(9), pages 1-29, May.
    2. Yu Dai & Feiyue Ma & Xiang Zhu & Qiao Su & Xiaozhou Hu, 2019. "Evaluation and Optimization of the Oil Jet Lubrication Performance for Orthogonal Face Gear Drive: Modelling, Simulation and Experimental Validation," Energies, MDPI, vol. 12(10), pages 1-23, May.
    3. Paolo Casoli & Carlo Maria Vescovini & Massimo Rundo, 2023. "One-Dimensional Fluid Dynamic Modeling of a Gas Bladder Hydraulic Damper for Pump Flow Pulsation," Energies, MDPI, vol. 16(8), pages 1-18, April.
    4. Thomas Lobsinger & Timm Hieronymus & Hubert Schwarze & Gunther Brenner, 2021. "A CFD-Based Comparison of Different Positive Displacement Pumps for Application in Future Automatic Transmission Systems," Energies, MDPI, vol. 14(9), pages 1-24, April.
    5. Miquel Torrent & Pedro Javier Gamez-Montero & Esteban Codina, 2021. "Parameterization, Modeling, and Validation in Real Conditions of an External Gear Pump," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    6. Miquel Torrent & Pedro Javier Gamez-Montero & Esteban Codina, 2021. "Model of the Floating Bearing Bushing Movement in an External Gear Pump and the Relation to Its Parameterization," Energies, MDPI, vol. 14(24), pages 1-23, December.
    7. Paolo Casoli & Carlo Maria Vescovini & Fabio Scolari & Massimo Rundo, 2022. "Theoretical Analysis of Active Flow Ripple Control in Positive Displacement Pumps," Energies, MDPI, vol. 15(13), pages 1-22, June.
    8. Timm Hieronymus & Thomas Lobsinger & Gunther Brenner, 2020. "Investigation of the Internal Displacement Chamber Pressure of a Rotary Vane Pump," Energies, MDPI, vol. 13(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:796-:d:730832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.