IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p535-d204268.html
   My bibliography  Save this article

Theoretical Investigation into the Ripple Source of External Gear Pumps

Author

Listed:
  • Xinran Zhao

    (School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
    Maha Fluid Power Research Center, Purdue University, Lafayette, IN 47905, USA)

  • Andrea Vacca

    (School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
    Maha Fluid Power Research Center, Purdue University, Lafayette, IN 47905, USA)

Abstract

External gear pumps are among the most popular fluid power positive displacement pumps, however they often suffer of excessive flow pulsation transmitted to the downstream circuit. To meet the increasing demand of quiet operation for modern fluid power system, a better understanding of the ripple source of gear pumps is desirable. This paper presents a novel approach for the analysis of the ripple source of gear pumps based on decomposition into a kinematic component and a pressurization component. The pump ripple can be regarded as the superposition of the displacement solution and the pressurization solution. The displacement solution is driven by the kinematic flow, and it can be derived from the kinematic flow theory; instead, the pressurization solution can be approximated by overlapping the pressurization flow for a single displacement chamber. Furthermore, in this way the changes of these two components with modification of the delivery circuit are determined in both analytical and numerical ways. The result of this analysis provides a good interpretation of the pulsation simulated by a detailed lumped-parameter simulation model, thus showing its validity. The result also indicates that the response of two ripple sources to the change of the loading in the downstream hydraulic circuit is very different. These findings reveal the limitation of the traditional experimental method for determining the pump ripple, that new experimental methods which are more physics-based can be potentially formulated based on this work.

Suggested Citation

  • Xinran Zhao & Andrea Vacca, 2019. "Theoretical Investigation into the Ripple Source of External Gear Pumps," Energies, MDPI, vol. 12(3), pages 1-26, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:535-:d:204268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/535/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valeriy Sanchugov & Pavel Rekadze, 2022. "New Method to Determine the Dynamic Fluid Flow Rate at the Gear Pump Outlet," Energies, MDPI, vol. 15(9), pages 1-29, May.
    2. Thomas Lobsinger & Timm Hieronymus & Hubert Schwarze & Gunther Brenner, 2021. "A CFD-Based Comparison of Different Positive Displacement Pumps for Application in Future Automatic Transmission Systems," Energies, MDPI, vol. 14(9), pages 1-24, April.
    3. Yu Dai & Feiyue Ma & Xiang Zhu & Qiao Su & Xiaozhou Hu, 2019. "Evaluation and Optimization of the Oil Jet Lubrication Performance for Orthogonal Face Gear Drive: Modelling, Simulation and Experimental Validation," Energies, MDPI, vol. 12(10), pages 1-23, May.
    4. Paolo Casoli & Carlo Maria Vescovini & Fabio Scolari & Massimo Rundo, 2022. "Theoretical Analysis of Active Flow Ripple Control in Positive Displacement Pumps," Energies, MDPI, vol. 15(13), pages 1-22, June.
    5. Miquel Torrent & Pedro Javier Gamez-Montero & Esteban Codina, 2021. "Parameterization, Modeling, and Validation in Real Conditions of an External Gear Pump," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    6. Miquel Torrent & Pedro Javier Gamez-Montero & Esteban Codina, 2021. "Model of the Floating Bearing Bushing Movement in an External Gear Pump and the Relation to Its Parameterization," Energies, MDPI, vol. 14(24), pages 1-23, December.
    7. Timm Hieronymus & Thomas Lobsinger & Gunther Brenner, 2020. "Investigation of the Internal Displacement Chamber Pressure of a Rotary Vane Pump," Energies, MDPI, vol. 13(13), pages 1-19, June.
    8. Paolo Casoli & Carlo Maria Vescovini & Massimo Rundo, 2023. "One-Dimensional Fluid Dynamic Modeling of a Gas Bladder Hydraulic Damper for Pump Flow Pulsation," Energies, MDPI, vol. 16(8), pages 1-18, April.
    9. Sangbeom Woo & Andrea Vacca, 2022. "An Investigation of the Vibration Modes of an External Gear Pump through Experiments and Numerical Modeling," Energies, MDPI, vol. 15(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:535-:d:204268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.