IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2468-d243210.html
   My bibliography  Save this article

Evaluation of the Hydro—Mechanical Efficiency of External Gear Pumps

Author

Listed:
  • Barbara Zardin

    (Fluid Power Lab, Engineering Department Enzo Ferrari, via P. Vivarelli 10, 41125 Modena, Italy)

  • Emiliano Natali

    (Fluid Power Lab, Engineering Department Enzo Ferrari, via P. Vivarelli 10, 41125 Modena, Italy)

  • Massimo Borghi

    (Fluid Power Lab, Engineering Department Enzo Ferrari, via P. Vivarelli 10, 41125 Modena, Italy)

Abstract

This paper proposes and describes a model for evaluating the hydro-mechanical efficiency of external gear machines. The model is built considering and evaluating the main friction losses in the machines, including the viscous friction losses at the tooth tip gap, at the bearing blocks-gears gaps, at the journal bearings, and the meshing loss. To calculate the shear stress at each gap interface, the geometry of the gap has to be known. For this reason, the actual position of the gears inside the pump casing and consequent radial pressure distribution are numerically calculated to evaluate the gap height at the tooth tips. Moreover, the variation of the tilt and reference height of the lateral gaps between the gears and the pump bushings are considered. The shear stresses within the lateral gaps are estimated, for different lateral heights and tilt values. At the journal bearings gaps, the half Sommerfeld solution has been applied. The meshing loss has been calculated according to the suggestion of the International Standards. The hydro-mechanical efficiency results are then discussed with reference to commercial pumps experimentally characterized by the authors in a previous work. The average percentage deviation from experimental data was around 2%, without considering the most critical operating conditions (high delivery pressure, low rotational speed). The limits of this approach are also explained. Finally, the role of each source of loss is discussed, considering different operating conditions and two values of fluid viscosity. Lateral gap losses and meshing loss are much more relevant in determining the hydro-mechanical efficiency variation in the pump’s operating range, especially at a low delivery pressure. Moreover, while lateral gap losses increase with the rotational speed, the meshing loss shows the opposite behavior. The tooth tip gap losses are never as relevant, but they increase at high pressure. The journal bearings losses become comparable with the lateral and meshing ones at high delivery pressure values. Considering the pumps analyzed and the operating range of delivery pressure values and rotational speed values, the meshing loss made the mechanical efficiency vary in a percentage range of ±7%, with lateral losses in the range of about the ±15%, when also considering the extreme operating points (low speed, high pressure; high speed, low pressure). The weight of the lateral losses slightly reduced when we analyzed the higher temperature results, while the meshing losses slightly increased.

Suggested Citation

  • Barbara Zardin & Emiliano Natali & Massimo Borghi, 2019. "Evaluation of the Hydro—Mechanical Efficiency of External Gear Pumps," Energies, MDPI, vol. 12(13), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2468-:d:243210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimo Rundo, 2017. "Models for Flow Rate Simulation in Gear Pumps: A Review," Energies, MDPI, vol. 10(9), pages 1-32, August.
    2. Emma Frosina & Adolfo Senatore & Manuel Rigosi, 2017. "Study of a High-Pressure External Gear Pump with a Computational Fluid Dynamic Modeling Approach," Energies, MDPI, vol. 10(8), pages 1-20, July.
    3. Gijsbert Toet & Jack Johnson & John Montague & Ken Torres & José Garcia-Bravo, 2019. "The Determination of the Theoretical Stroke Volume of Hydrostatic Positive Displacement Pumps and Motors from Volumetric Measurements," Energies, MDPI, vol. 12(3), pages 1-15, January.
    4. Divya Thiagarajan & Andrea Vacca, 2017. "Mixed Lubrication Effects in the Lateral Lubricating Interfaces of External Gear Machines: Modelling and Experimental Validation," Energies, MDPI, vol. 10(1), pages 1-20, January.
    5. Shu Wang & Hisatoshi Sakura & Aditya Kasarekar, 2011. "Numerical modelling and analysis of external gear pumps by applying generalized control volumes," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 17(5), pages 501-513, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Corvaglia & Massimo Rundo & Paolo Casoli & Antonio Lettini, 2021. "Evaluation of Tooth Space Pressure and Incomplete Filling in External Gear Pumps by Means of Three-Dimensional CFD Simulations," Energies, MDPI, vol. 14(2), pages 1-16, January.
    2. Miquel Torrent & Pedro Javier Gamez-Montero & Esteban Codina, 2021. "Parameterization, Modeling, and Validation in Real Conditions of an External Gear Pump," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    3. Massimo Rundo, 2017. "Models for Flow Rate Simulation in Gear Pumps: A Review," Energies, MDPI, vol. 10(9), pages 1-32, August.
    4. Gabriele Muzzioli & Luca Montorsi & Andrea Polito & Andrea Lucchi & Alessandro Sassi & Massimo Milani, 2021. "About the Influence of Eco-Friendly Fluids on the Performance of an External Gear Pump," Energies, MDPI, vol. 14(4), pages 1-26, February.
    5. Gianluca Marinaro & Emma Frosina & Adolfo Senatore, 2021. "A Numerical Analysis of an Innovative Flow Ripple Reduction Method for External Gear Pumps," Energies, MDPI, vol. 14(2), pages 1-22, January.
    6. Piotr Osiński & Grzegorz Chruścielski & Leszek Korusiewicz, 2021. "Theoretical and Experimental Fatigue Strength Calculations of Lips Compensating Circumferential Backlash in Gear Pumps," Energies, MDPI, vol. 14(1), pages 1-14, January.
    7. Pedro Javier Gamez-Montero & Ernest Bernat-Maso, 2022. "Taguchi Techniques as an Effective Simulation-Based Strategy in the Design of Numerical Simulations to Assess Contact Stress in Gerotor Pumps," Energies, MDPI, vol. 15(19), pages 1-24, September.
    8. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    9. Hongfang Lu & Xiaonan Wu & Kun Huang, 2018. "Study on the Effect of Reciprocating Pump Pipeline System Vibration on Oil Transportation Stations," Energies, MDPI, vol. 11(1), pages 1-23, January.
    10. Pedro Javier Gamez-Montero & Esteve Codina & Robert Castilla, 2019. "A Review of Gerotor Technology in Hydraulic Machines," Energies, MDPI, vol. 12(12), pages 1-44, June.
    11. Massimo Rundo & Giorgio Altare & Paolo Casoli, 2019. "Simulation of the Filling Capability in Vane Pumps," Energies, MDPI, vol. 12(2), pages 1-18, January.
    12. Valeriy Sanchugov & Pavel Rekadze, 2022. "New Method to Determine the Dynamic Fluid Flow Rate at the Gear Pump Outlet," Energies, MDPI, vol. 15(9), pages 1-29, May.
    13. Yu Dai & Feiyue Ma & Xiang Zhu & Qiao Su & Xiaozhou Hu, 2019. "Evaluation and Optimization of the Oil Jet Lubrication Performance for Orthogonal Face Gear Drive: Modelling, Simulation and Experimental Validation," Energies, MDPI, vol. 12(10), pages 1-23, May.
    14. Piotr Osiński & Adam Deptuła & Marian A. Partyka, 2022. "Hydraulic Tests of the PZ0 Gear Micropump and the Importance Rank of Its Design and Operating Parameters," Energies, MDPI, vol. 15(9), pages 1-27, April.
    15. Sangbeom Woo & Timothy Opperwall & Andrea Vacca & Manuel Rigosi, 2017. "Modeling Noise Sources and Propagation in External Gear Pumps," Energies, MDPI, vol. 10(7), pages 1-20, July.
    16. Huican Luo & Peijian Zhou & Lingfeng Shu & Jiegang Mou & Haisheng Zheng & Chenglong Jiang & Yantian Wang, 2022. "Energy Performance Curves Prediction of Centrifugal Pumps Based on Constrained PSO-SVR Model," Energies, MDPI, vol. 15(9), pages 1-19, May.
    17. Pedro Javier Gamez-Montero & Robert Castilla & Esteve Codina & Javier Freire & Joan Morató & Enric Sanchez-Casas & Ivan Flotats, 2017. "GeroMAG: In-House Prototype of an Innovative Sealed, Compact and Non-Shaft-Driven Gerotor Pump with Magnetically-Driving Outer Rotor," Energies, MDPI, vol. 10(4), pages 1-14, March.
    18. Paulina Szwemin & Wieslaw Fiebig, 2021. "The Influence of Radial and Axial Gaps on Volumetric Efficiency of External Gear Pumps," Energies, MDPI, vol. 14(15), pages 1-21, July.
    19. Nicola Casari & Ettore Fadiga & Michele Pinelli & Saverio Randi & Alessio Suman, 2019. "Pressure Pulsation and Cavitation Phenomena in a Micro-ORC System," Energies, MDPI, vol. 12(11), pages 1-18, June.
    20. Pawel Sliwinski, 2020. "Determination of the Theoretical and Actual Working Volume of a Hydraulic Motor," Energies, MDPI, vol. 13(22), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2468-:d:243210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.