IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p2992-d797462.html
   My bibliography  Save this article

An Experimental and a Kinetic Modelling Study of Ethanol/Acetone/Ethyl Acetate Mixtures

Author

Listed:
  • Yangxun Liu

    (Zhejiang Technical Institute of Economics, Hangzhou 310018, China)

  • Weinan Liu

    (College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

  • Huihong Liao

    (Vehicle Engineering Center-CAE Technology Development, Geely Automobile Research Institute, Ningbo 315336, China)

  • Hasier Ashan

    (College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

  • Wenhua Zhou

    (College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

  • Cangsu Xu

    (College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

With the world’s energy resources decreasing, ethanol/acetone/ethyl acetate mixed fuel has the potential as a fossil fuel alternative or oxygenated fuel additive. In this work, the burning characteristics of ethanol/acetone/ethyl acetate mixed fuels including 3 pure fuels, 9 binary fuels, and 7 ternary fuels were studied at a temperature of 358 K, the pressure of 1 bar, and the equivalence ratios of 0.7 to 1.4 in the constant volume combustion chamber (CVCC). The burning velocities of the ternary fuels were compared at ϕ = 0.8, 1.0, and 1.4. The results show that the laminar burning velocities of the mixed fuels are affected by the contents of ethanol, acetone, and ethyl acetate. The Markstein length, Markstein number, and burning flux were also analyzed in this paper. Furthermore, a detailed chemical mechanism comprising 506 species and 2809 reactions was reduced to a skeletal mechanism including 98 species and 642 reactions, using the directed relation graph with error propagation (DRGEP). The experimental and the simulated laminar burning velocities were compared. The results of laminar burning velocities show that the relative deviation of ETEAAC 112 is approximately 17.5%. The sensitivity coefficients, flame structure, and reaction paths of ethyl acetate were investigated with the skeletal and the detailed mechanisms. It is found that the key reaction path is retained in the skeletal mechanism.

Suggested Citation

  • Yangxun Liu & Weinan Liu & Huihong Liao & Hasier Ashan & Wenhua Zhou & Cangsu Xu, 2022. "An Experimental and a Kinetic Modelling Study of Ethanol/Acetone/Ethyl Acetate Mixtures," Energies, MDPI, vol. 15(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:2992-:d:797462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/2992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/2992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    2. Paolo Iodice & Massimo Cardone, 2021. "Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions," Energies, MDPI, vol. 14(13), pages 1-18, July.
    3. Yangxun Liu & Weinan Liu & Huihong Liao & Wenhua Zhou & Cangsu Xu, 2021. "An Experimental and Kinetic Modelling Study on Laminar Premixed Flame Characteristics of Ethanol/Acetone Mixtures," Energies, MDPI, vol. 14(20), pages 1-18, October.
    4. Luke Oxenham & Yaodong Wang, 2021. "A Study of the Impact of Methanol, Ethanol and the Miller Cycle on a Gasoline Engine," Energies, MDPI, vol. 14(16), pages 1-24, August.
    5. Xu, Cangsu & Wang, Hanyu & Oppong, Francis & Li, Xiaolu & Zhou, Kangquan & Zhou, Wenhua & Wu, Siyuan & Wang, Chongming, 2020. "Determination of laminar burning characteristics of a surrogate for a pyrolysis fuel using constant volume method," Energy, Elsevier, vol. 190(C).
    6. Pierpaolo Polverino & Ivan Arsie & Cesare Pianese, 2021. "Optimal Energy Management for Hybrid Electric Vehicles Based on Dynamic Programming and Receding Horizon," Energies, MDPI, vol. 14(12), pages 1-11, June.
    7. Sean P. Cooper & Claire M. Grégoire & Darryl J. Mohr & Olivier Mathieu & Sulaiman A. Alturaifi & Eric L. Petersen, 2021. "An Experimental Kinetics Study of Isopropanol Pyrolysis and Oxidation behind Reflected Shock Waves," Energies, MDPI, vol. 14(20), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    2. Giorgia De Guido & Chiara Monticelli & Elvira Spatolisano & Laura Annamaria Pellegrini, 2021. "Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer," Energies, MDPI, vol. 14(17), pages 1-18, September.
    3. José Javier López & Oscar A. de la Garza & Joaquín De la Morena & Simón Martínez-Martínez, 2021. "Influence of Cavitation in Common-Rail Diesel Nozzles on the Soot Formation Process through Measuring Soot Emissions," Energies, MDPI, vol. 14(19), pages 1-11, October.
    4. Yangxun Liu & Weinan Liu & Huihong Liao & Wenhua Zhou & Cangsu Xu, 2021. "An Experimental and Kinetic Modelling Study on Laminar Premixed Flame Characteristics of Ethanol/Acetone Mixtures," Energies, MDPI, vol. 14(20), pages 1-18, October.
    5. Kabir A. Mamun & F. R. Islam & R. Haque & Aneesh A. Chand & Kushal A. Prasad & Krishneel K. Goundar & Krishneel Prakash & Sidharth Maharaj, 2022. "Systematic Modeling and Analysis of On-Board Vehicle Integrated Novel Hybrid Renewable Energy System with Storage for Electric Vehicles," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    6. Yuxuan Zhao & Enhua Wang & Zhicheng Shi, 2022. "Numerical Investigation of the Ignition Delay Time of Kerosene Premixed Combustion in an SI Engine," Energies, MDPI, vol. 15(5), pages 1-15, February.
    7. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    8. Omid Doustdar & Soheil Zeraati-Rezaei & Jose Martin Herreros & Athanasios Tsolakis & Karl D. Dearn & Miroslaw Lech Wyszynski, 2021. "Tribological Performance of Biomass-Derived Bio-Alcohol and Bio-Ketone Fuels," Energies, MDPI, vol. 14(17), pages 1-11, August.
    9. Wu, Zhicong & Xu, Gang & Zhang, Wentao & Xue, Xiaojun & Chen, Heng, 2023. "Thermodynamic and economic analysis of a new methanol steam reforming system integrated with CO2 heat pump and cryogenic separation system," Energy, Elsevier, vol. 283(C).
    10. Fabrizio Donatantonio & Alessandro Ferrara & Pierpaolo Polverino & Ivan Arsie & Cesare Pianese, 2022. "Novel Approaches for Energy Management Strategies of Hybrid Electric Vehicles and Comparison with Conventional Solutions," Energies, MDPI, vol. 15(6), pages 1-22, March.
    11. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    12. Grzegorz Karoń, 2022. "Safe and Effective Smart Urban Transportation—Energy Flow in Electric (EV) and Hybrid Electric Vehicles (HEV)," Energies, MDPI, vol. 15(18), pages 1-8, September.
    13. Paolo Iodice & Enrico Fornaro & Massimo Cardone, 2022. "Hybrid Propulsion in SI Engines for New Generation Motorcycles: A Numerical-Experimental Approach to Assess Power Requirements and Emission Performance," Energies, MDPI, vol. 15(17), pages 1-13, August.
    14. Abi Nurazaq, Warit & Wang, Wei-Cheng & Lin, Jhe-Kai, 2024. "The properties of sustainable aviation fuel II: Laminar flame speed," Energy, Elsevier, vol. 294(C).
    15. Rafał Porowski & Robert Kowalik & Stanisław Nagy & Tomasz Gorzelnik & Adam Szurlej & Małgorzata Grzmiączka & Katarzyna Zielińska & Arief Dahoe, 2024. "Deflagration Dynamics of Methane–Air Mixtures in Closed Vessels at Elevated Temperatures," Energies, MDPI, vol. 17(12), pages 1-18, June.
    16. Andyn Omanovic & Norbert Zsiga & Patrik Soltic & Christopher Onder, 2021. "Optimal Degree of Hybridization for Spark-Ignited Engines with Optional Variable Valve Timings," Energies, MDPI, vol. 14(23), pages 1-21, December.
    17. Alberto Broatch & Pablo Olmeda & Benjamín Plá & Amin Dreif, 2022. "Novel Energy Management Control Strategy for Improving Efficiency in Hybrid Powertrains," Energies, MDPI, vol. 16(1), pages 1-21, December.
    18. Vicente Rojas-Reinoso & Janko Alvarez-Loor & Henrry Zambrano-Becerra & José Antonio Soriano, 2023. "Comparative Study of Gasoline Fuel Mixture to Reduce Emissions in the Metropolitan District," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    19. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    20. Brian Gainey & Ziming Yan & John Gandolfo & Benjamin Lawler, 2022. "High Load Compression Ignition of Wet Ethanol Using a Triple Injection Strategy," Energies, MDPI, vol. 15(10), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:2992-:d:797462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.